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ABSTRACT

In recent years, power saving in transmitter orfand receiver, achieving higher capacity and
reducing interference, are the main attractive research subjects in the field of wireless radio
communications. The essential goal of these systems is to increase the power of the receiving signal
by appropriate forming the antenna radiation pattern in the transmitter, receiver, or both of them.
Antenna beamforming techniques, in addition to increase the overall system capacity and quality
of the system, decrease the energy consumption. In this study, besides a short review on the
advances on antenna and associated applications, by reviewing the current methods for antenna
beamforming and their positive effects on reduction of energy consumption, some newest
techniques and research areas are proposed. In the rest of study, we focus on antenna array digital
processing. Two types of antenna beamforming proposed in antenna array digital processing,
fixed-beam as well as adaptive-beam and these two major categories are illustrated with more
details. Besides, Simulation results of three fixed-beam methods (Max-SIR, MMSE and LCMV) and
two adaptive weighting algorithms (LMS and CM) are described and their performances are
evaluated based on different metrics, normalized mean square error, bit error rate, maxmum gain
of array factor and signal to noise plus interference ratic. Finally, the advantages and
disadvantages of each category and related techniques are extracted and they are compared based
on computational complexity and convergence time.
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INTRODUCTION

Nowadays, wireless communications have been very popular and diverse applications of them
can be seen in various aspects of human life. Cellular wireless communications, satellite
communications, wireless radio of Police, radio taxies, Bluetooth, Wireless Local Loop (WLL), point-
to-point microwave links, Wireless Local Area Network (WLAN) and wireless wideband networks
such as internet are some examples of wireless communications. Growth in wireless technologies
and user’s demands, lead us to extend these systems in rural and urban areas, indoor and outdoor
environments, short-range as well as long-range applications and then optimizing them for long

* An invited paper
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term scheduling. In this regard, wireless cellular communications, wireless networks, wireless
wideband communications and digital radio transmitters takes precedence over other technologies
due to their diversities, flexabilities and number of users (Ahmadi, 2009; Alexiou and Haardt, 2004).
In one hand, by optimum using of available frequency bandwidth and reusing of radio
spectrum and on the other hand, by decreasing the number of fixed stations {(to reduce costs), the
required energy consumption will be decreased. In noisy systems, by reducing internal noises,
Signal to Noise Ratio (SINR) will be increased and then the system can produce better Quality of
Services (Qo5). In systems with interference, the main goal 1s to reduce interferences and increase
Carrier to Interference Eatio (CIE) in the way that consuming energy doesn’t increase. Time-space
techniques, such as, space-time coding, low noise filters, channel equalizers and high performance
modulations, can decrease the effects of interferences and noises and then reduce the power
consumption. Furthermore, due to frequency-reuse, co-channel interference will be increased and
then the quality of system will be decreased (Rappaport, 1999; Zhang and Hsiao-Hwa, 2008).
Four methods are proposed to manage radio rescurces and decrease power consumption as

follow:

¢ Increasing the performance of energy convertor devices, such as, high performance radio
amplifiers, mixers and modulators

+ Using low power electronic and communication devices, such as, CMOS-based technologies and
Radio Frequency Integrated Circuits (RFIC)

*+ Reduecing electrical energy consumption in such way that radio systems transmit or receive in
lower power. For example, some power control techniques can reduce power consumption in
each element of wireless systems

*+  Applying antenna features to produce strong signals in transmitters or receivers

During these two decades, appropriate beamforming and concentrating radiated power in
specific directions are been so attractive. As so, in this research, we focus on antenna beamforming.
It 1s obvicus that considering passive elements as directional antennas or active antenna structures,
such as, fixed-beam and adaptive arrays, radio resources (power, time, frequency and space) can

be used for different communication systems as well as broadcasting wireless systems (KKaiser ef al.,

2005).

NUMBER OF MOBILE SUBSCRIBERS AT A GLANCE

Currently, there are more than b billion mobile users in the world and this number will reach
to B.5 billion users at the end of 2010, Figure 1 {extracted from www.computerweekly.com) shows
the number of mobile subscribers in the years between 2000 and 2010. As shown, in 2000, there
were 7B0 million users in the world and it is predicted that this number growth to 4.6 billion in
2010. Figure 1 also shows a 61% rise in the number of mobile users in time interval 2000 to 2010,
It 1s the highest growth between different communication technologies.

Figure 2 (extracted from www.itu.int) shows the penetration rate of mobile technology between
years 2000 and 2010. It 1s predictable that the penetration rate in 2010 will be more than 80%.
According to Fig. 1 and 2 and the importance of wireless communication systems in the human life,
it 1s very obvious that power consumption of these systems should be optimized, interference should

be decreased and radio resources should be managed.
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Fig. 2: Worldwide penetration of mobile subscribers

ANTENNA DEVELOPMENTS IN WIRELSS COMMUNICATIONS
In the past, antenna had viewed as a single element, but, nowadays, antenna arrays have
been one of the most important parts of current wireless communication systems. The evolution of

antenna in wireless systems is as follow.,

Omni-directional antennas: Omni-directional antennas are used for broadcasting and local

applications. For covering large zones the height and power of the antenna should be increased

(Kraus and Marhefka, 20086).
Directional antennas: In these antennas, signals are transmitted in a specific direction. These
antennas can be used instead of high power omni-directional antennas and we gain higher

coverage and lower interference (Kraus and Marhefka, 2008).

Cellular structure: In cellular mobile and multi-beam satellite communications, the coverage area

is divided to several zones {cells) that each zone will be covered by a base-station containing one
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omni-directional or several directional antennas. In this regard, by reusing radio resources

(time, frequency andfor code), both capacity and quality of service can be increased
{Bellofiore et al., 2002).

Cellular sectorization: In cellular systems that are co-channel interference limited, directional
antennas are very useful to decrease the received power of interferers from side-lobes of antenna
instead of increasing the power. This means, each base-station equipped with three 120-degree or
six 60-degree directional antennas (Bellofiore et al., 2002; Etemad, 2008),

Space diversity: In order to improve the quality of received signals in radio receivers and also
overcoming multipath fading, space diversity is used. In this technique, multiple antennas are
located in such way that they are too distant (about 5-10 wavelengths). Signals which received
from multipath are combined in a decision making box. Four methods are considered to combining
and finding the better signal, selection method that select the signal belongs to higher quality path,
scanning method that search for a new path if signal reaches below a defined threshold, Equal
Gain Combining (KGC) that considers all paths with similar weights and Maximal Ratio Combining
(MRC) that considers paths with related SNR-based weights. Qutput of scanning and selection
methods just belongs to a path whereas output of two other methods is a combination of the signals

of all paths (Bhobe and Perini, 2001).

MIMO systems: In Multi-Input Multi-Output (MIMO) systems that use multiple antennas at both
transmitter and receiver, have demonstrated the potential for increased capacity and diversity gain
in rich multipath environments same as cellular mobile and wireless broadband communication
systems. It is remarkable that the maximum achievable diversity gain of a MIMO system with Ny
antenna elements at the transmitter and Ny antenna elements at the receiver is NoxN5. Moreover,
it has been proved that when the fades connecting pairs of transmit and receive antenna elements
are independently and identically distributed (i.i.d.), the capacity of a Rayleigh distributed flat
fading channel increases almost linearly with the min {N,, N} (Godara, 2004, Nooralizadeh and
Moghaddam, 2010; Moghaddam and Saremi, 2008).

Space-time Coding: In multiple antenna systems by using space-time coding, such as, Alamouti

coding, we can add high gain to the system instead of increasing the power level of the transmitter
{(Badie et al., 2003).

Antenna arrays with fixed weights: There are several antenna arrays (windows) with fixed
weight, such as, Bartlett, Chebychev, Blackman, Hanning, Hamming, Tukey, Natal, Gaussian and
Kaiser. The main goal of these predefined weighting windows 1s to obtain an appropriate gain for

improving the transmitting and/or receiving power (El-Zooghby, 2005).

Phased array antennas: These antenna arrays have very huge applications in recent vears. In
these antennas, for improving the transmitted or received signal, processing is held in Intermediate
Frequency (IF) or Radic Frequency (RF) and the phase of each antenna element will be changed
(Fakharzadeh Jahromi, 2008).
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Digital Beam Forming: In digital beamforming, instead of hardware changes, major part of
processing is done by digital processors in IF or baseband. This type of processing, increase the
flexibility, reduce the size of the system and by using high speed processors and doing processes
with software operations, the energy consumption will be decreased. By appropriate bemforming
at the transmitter, receiver or both, we can reach to higher receiving power, better Signal to Noise
Plus Interference Ratio (SNIR) and lower power consumption. In the following section, two major
techniques for forming the radiation pattern of antenna arrays, fixed beam and adaptive
processing, are discussed with more details (Balanis and loannides, 2007; Bellofiore et af., 2002;
Litva and Lo, 1996; Sarkar et al., 2003; Sun et al., 2009).

ANTENNA ARRAY SIGNAL PROCESSING

With the direction of the incoming signals known or estimated via Direction of Arrival (DOA)
estimation methods, the next step 1s to use spatial processing techniques to improve the reception
performance of the receiving antenna array based on this information. Some of these spatial
processing techniques are referred to as beamforming because they can form the array radiation
pattern to meet the requirements dictated by the wireless system. Given a one dimensional (1)
Uniform Linear Array (ULA) of elements (Fig. 3) and an impinging wave-front from an arbitrary
point source, the directional power pattern P(0) can be expressed as:

P(e):‘[a(x).e” RAGx.8) gy (1)

where, o (x) is the amplitude distribution along the array, B is the phase constant and d (x, 0) is
the relative distance of the impinging wave-front, with an angle of arrival 0, has to travel between
points uniformly spaced a distance x apart along the length of the array.

The exponential term is the one that primarily scans the beam of the array in a given angular
direction. The integral of Eq. 1 can be generalized for two- and three-dimensional configurations.
Equation 1 1s basically the Fourier transform of a (%) along the length of the array and is the basis
for beamforming methods. The amplitude distribution « (x), necessary for a desired P(0), is usually
difficult to implement practically. Therefore, most of the times, realization of (1) is accomplished
using discrete sources, represented by a summation over a finite number of elements. Thus, by
controlling the relative phase between the elements, the beam can be scanned electronically with
some possible changes in the overall shape of the array pattern.

This 1s the basic principle of array phasing and beam shaping. The main objective of this spatial
signal pattern shaping is to simultaneously place a beam maximum toward the Signal of Interest

B IR

1 2 M

Fig. 3: 1-D uniform linear array
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{(50]) and 1deally nulls toward directions of interfering signal(s) or Signal Not of Interest (SNOT).
This process continuously changes to accommaodate the incoming SOIs and SNOIs. The signal
processor of the array must automatically adjust the weight vector W = [W, W,.. W,,|" which
corresponds to the complex amplitude excitation along each antenna element.

It 1s usually convenient to represent the signal envelopes and the applied weights in their
complex envelope form. This relationship is represented by Eq. 2

r(t)=Re[x(t)."*")] (2)

where, w, is the angular frequeney of operation and x (t) is the complex envelope of the received
real signal r (t). The incoming signal 1s weighted by the array pattern and the output is represented
by:

y(t)=Re

iw:(t).xn (t).ej'””}—Re[WH(t).x(t).ej”’“'t] (3)

n=1

where, n indicates each of the array elements and W¥t) x(t) is the complex envelope representation
of v (t). Sinece, for any modern electronic system, signal processing 1s performed in discrete-time, the
weight vector W combines linearly the collected discrete samples to form a single signal cutput
expressed as:

y(k) :i W x, (K)=W"x(k) (4)

n=1

where, k denotes discrete time index of the received signal sample being considered. The concept,
of beamforming is applicable in both continuous-time and discrete-time signals. Therefore, each
element of the receiving antenna array possesses the necessary electronies to down-convert, the
received signal to baseband and for Analog-to-Digital (AD) conversion for digital beamforming.

To simplify the analysis, only baseband equivalent complex signal envelopes along with
discrete-time processing will be considered herein. Various adaptive algorithms have already been
developed to calculate the optimal weight coefficients that satisfy several criteria or constraints.
Once the beamforming weight vector W is calculated, the response of this spatial filter is
represented by the antenna radiation pattern (beampattern) for all directions, which is expressed
as:

P(8)=|W"(®)a(®)’ (5)

where, 5, P (0) represents the average power of the spatial filter output when a single,
unity-power signal arrives from angle 0. With proper control of the magnitude and phase of W, the
pattern will exhibit a main beam in the direction of the desired signal and, ideally, nulls toward the
direction of the interfering signals (Balanis and loannides, 2007; Bellofiore ef al., 2002). In
following subsections three classes of beamformers, classical, fixed-beam and adaptive algorithms
are described.
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(1) Classical beamformers: In classical beamforming, the beamforming weights are set to be
equal to the array response vector of the desired signal. For each particular direction 0, the
antenna pattern formed using the weight vector W, has the maximum gain in this direction
compared to any other possible weight vector of the same magnitude. This is accomplished because
W, adjusts the phases of the incoming signals arriving at each antenna element from a given
direction 0, so that they add in-phase {(or constructively). Because all the elements of the
beamforming weight vector are basically phase shifts with unity magnitude, the system is
commonly referred to as phased array. Mathematically, the desired response of the method can be
justified by the Cauchy-Schwartz inequality:

Wh@®a®,) <|w[ face,) ©

for all vectors W, with equality holding if and only if W is proportional to ¢ (6,). In the absence of
array ambiguity, the effective pattern in Kq. b possesses a global maximum at 0,. Fven though the
classical beamformer is the ideal choice to direct the maximum of the beampattern toward the
direction of a SOI, since the complex weight vector W can be easily derived in closed form, it lacks
the additional ability to place nulls toward any present SNOIs, often required in pragmatic
scenarios. This 1s obvious when observing the expression in Kq. 5 where, besides the look direction
0., control of the beampattern cannot be achieved in the rest of the angular region of interest. Thus,
to accommodate all the requirements, a more advanced spatial processing technique is necessary
to be applied. As expected, the classical beamformer directs its maximum toward the direction of the
S0OI but fails to form nulls toward the directions of the SINCIs, sinece it does not have control of the
beampattern, whereas the adaptive beamforming algorithms achieve simultaneously to form a
maximum toward the direction of the SOI and place nulls in the directions of the SNOIs
{Balanis and Ioannides, 2007; Bhobe and Perini, 2001).

(2)Fixed-beam methods: Depending on how the beamforming weights are chosen, beamformers
can be classified as data independent or statistically optimum. The weights in a data independent
beamformer do not depend on the received array data and are chosen to present a specified
response for all signal and interference scenarios. In practice, propagating waves are perturbed by
the propagating medium or the receive mechanism. In this case, the plane wave assumption may
no longer hold and weight vectors based on plane-wave delays between adjacent elements will not
combine ccherently the waves of the desired signal (El-Zooghby, 2005),

Matching of a randomly perturbed signal with arbitrary characteristics can be realized only in
a statistical sense by using a matrix weighting of input data which adapts to the received signal
characteristics. This is referred to as statistically optimum beamforming. In this case, the weight
vectors are chosen based on the statistics of the received data. The weights are selected to optimize
the beamformer response so that the array output contains minimal contributions due to noise and
signals arriving from directions other than that of the desired signal (Godara, 2004).

Any possible performance degradation may oceur due to a deviation of the actual operating
conditions from the assumed ideal and can be minimized by the use of complementary methods that
introduce constraints. Due to the interest in applying array signal processing techniques in cellular
communications, where mobile units can be located anywhere in the cell, statistically optimum
beamformers provide the ability to adapt to the statistics of different subseribers. There exist
different criteria for determining statistically-optimum beamformer weights (Gross, 2005). Three
of them are reviewed in this section.
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The essential goal of the fixed beam methaods is to locate the main lobe of the radiation pattern
in the direction of the signal and set to zero the radiation pattern in the direction of interference
signals. There exist three different criteria for determining statistically-optimum beamformer
weights, that are Maxmum Signal to Noise Plus Interference Ratio (MaxSNIR), Minimum Mean
Square Error (MMSE) and Linearly Constrained Minimum Varianece (LCMV),

(a) Maximum Signal to Noise Plus Interference Ratio (MaxSNIR): In the case of more than
one user in the communication system, it 1s often desired to suppress the interfering signals, in
addition to naise, using appropriate signal processing techniques. There are some intuitive methods
to accomplish this, for example, the Multiple Side lobe Canceller (MSC). The basic idea of the MSC
is that the conventional beamforming weight vectors for each of the signal sources are first
calculated and the final beamforming vector is a linear combination of them in a way that the
desired signal is preserved whereas all the interference components are eliminated. MSC has some
limitations, however. For instance, for a large number of interfering signals it cannot cancel all of
them adequately and can result in significant gain for the noise compenent. The solution to these
limitations is the maxmum SNIE beamformer that maximizes the output signal to noise and
interference power ratio (Balanis and Joannides, 2007; Godara, 2004),
As depicted in Fig. 4, the cutput of the beamformer is given by:

y=W'X=W"GE+n+i)=y,+v, (7)

where, all the components collected by the array at a single cbservation instant are Nx1 complex

vectors and are classified as s is the desired signal component arriving from DOA eu,i:isi the
i=1
interference component (assuming I such sources to be present) and n is the noise compoenent. In

(7), we also separate the desired signal array response weighted output, y, = W.S and the
interference-plus-noise total array response, y,;; = W=.(n+1).

B s

[: O

D x (k)

91 i] (k) w;

\ v (k)
L]

. ()
B iy (k) | >_ Wu-

Fig. 4: Antenna array structure with MaxSNIR weighting
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Consequently, the weighted array signal output power is

E{y.|3=W"E{ss"} W=W"R_W (8)

yS

where, R_ is the auto-covariance matrix of the signal vectors S and the weighted noise plus
interference output power is

Ely,| =W E{fi +n[ 3. W=W"R W (9)

where, Ry 1s the auto-covariance matrix of the vectors 1+n. Therefore, the weighted output SNIR
can be expressed as:

By} wWYR, W
E{‘ymr} WIR,, W

(10)

By appropriate factorization of Ky and manipulation of the SNIK expression, the maximization
problem can be recognized as an eigen-decomposition problem. The expression for W that
maximizes the SNTR 1s found to be:

Wi wsr :RNI_1 a(t;) (11)

This 1s the statistical optimum solution in maximizing the cutput SNIR in a noise plus
interference environment, but it requires a computationally intensive inversion of R,;, which may
be problematic when the number of elements in the antenna array is large.

(b) Minimum Mean Square Error (MMSE): If sufficient knowledge of the desired signal is
available, a reference signal d can be generated. A block diagram of an antenna array system using
reference signals is shown in Fig. 5. These reference signals are used to determine the optimal

f s ®@ v
D x, {k) W
/ >
91% sz(k) » W,
. Yo,
K(k)' X () X of
8y > p w,
Control e® ¥
system
+
d (k)

Fig. B: Antenna array structure with MMSE or LCMV techniques
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weight vector. This 1s done by minimizing the mean square error of the reference signals and the
outputs of the M-element antenna array. The concept of reference signal use in antenna array
system was first introduced by Widrow in where he described several pilot-signal generation
techniques (Balanis and loannides, 2007; Moghaddam and Sarem, 2010).

For beamforming considerations, the reference signal is usually obtained by a periodic
transmission of a training sequence, which is a priori known at the receiver and is referred to as
temporal reference. Note that information about the direction of the desired signal is usually
referred to spatial reference. The temporal reference is of vital importance in a fading environment
due to lack of angle of arrival information. The array reference signal need not necessarily be an
exact replica of the desired signal, even though this is what cceurs in most of the cases. In general,
it can be unknown but needs to be correlated with the desired sighal and uncorrelated with any
possible interference.

As depicted in Fig. 5, at each observation instance k, the error e (k) between the reference
signal d (k) and the weighted array output y (k) is given by:

e(k)=d (k) —y(k) = d(k) - W" x(k) (12)
Mathematically, the MMSE criterion can be expressed as:

min{ B etc)” || (13)

In order to get a meaningful result, the objective function needs to have explicit dependency
on the conjugate of the weight vector. This simply usually translates into changing transposition
to conjugate transposition (or Hermitian). Therefore, we have

%:726* &) x (k) (14)

To minimize the objective function, we set Kq. 14 to zero. Considering additicnally the
expectation value of the minimum of |e (k}|? it yields

2R_ W -2r,=0 (15)

where, R, = E{X.X"} is the signal auto-covariance matrix and r,, = E{X.d'} is the reference signal
covariance vector. Thus, the optimal MMSE weight solution is given by Eq. 16,

Wise :Rxxil - (16)

and is usually referred to as the Wiener-Hopf solution. One disadvantage using this method is the
generation of an accurate reference signal based on limited knowledge at the receiver.

(¢) Linearly Constrained Minimum Variance (LCMV): In the MMSE criterion, the Wiener
filter minimizes the MSE with no constraints imposed on the sclution (i.e., the weights). However,
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it may be desirable, or even mandatory, to design a filter that minimizes a mean square criterion
subject to a specific constraint. The LCMV constrains the response of the beamformer so that signals
from the direction of interest are passed through the array with a specific gain and phase. However
it requires knowledge, or prior estimation, of the desired signal array response « (8,) with DOA 0,.
Its weights are chosen to minimize the expected value of the output powerfvariance subject to the
response constraints (Balanis and loannides, 2007, Godara, 2004). That is

min,g {W" R, W} subjecttoC" W=g¢' (17)

Ce CY"*® has K linearly independent constraints and geC*¥* is the constraint response vector.
The constraints have an effect of preserving the desired signal while minimizing contrbutions
to the array output due to interfering signals and noise arriving from undesired directions. The
solution to this constrained optimization problem requires the use of the Lagrange multiplier vector

beC¥. Letting F (W) = WER__W be the cost function and G (W) = C*. W-g* = 0 be the constraint
function, the following expression is formed:

H(W):%F(WH e (W):%WH.RXX Wbt (C W g (18)

F (W) has its minimum value at a point W subject to the constraint G (W)=CIW-g"= 0, 1ie,
when H (W) 1s minimum. Therefore, to find the minimum point in Kq. 18, we differentiate with

respect to W and set it equal to zero, which vields:

W, =—Ry'Cb (19)

opt —
b=—[C"R.."'CT" g’ (20

where, the existence of [C ®.R_.C] follows from the fact that R_ is positive definite and C is
full-rank. Therefore, the LCMV estimate of the weight vector is

W, =—R, [CTR,.CI'g (21

As a special case, a requirement would be to force the beam pattern to be constant in the
bore-sight direction; concisely, this can be stated mathematically as:

min, {W" R._. W} subjectto W¥.0u(6,)=g" (22)

where, g is a complex scalar which constrains the output response to a (0,). In this case, the LCMV
weight estimate is

¥ Rxx_l alQ,) (23)

W_.=g.
e o (8,) Ry~ (8,
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For the special case when g =1 (i.e., the gain constant is unity), the optimum solution of
Eq. 23 is termed as the Minimum Variance Distortionless Response (MVDER) or Minimum Variance
(MV) beamformer. The advantage of using LCMYV criteria is general constraint approach that
permits extensive control over the adapted response of the beamformer. It is a flexible technique

that does not require knowledge of the desired signal auto-covariance matrix R, the noise plus

interference auto-covariance matrix Ry, or any reference signal d (k). A certain level of
beamforming performance can be attained through the design of the beamformer, allowed by the

constraint matrix. However, the LCMYV is computationally complex.

(d) Simulation results of fixed-beam methods: By comparing three well-known methods for
fixed-beam forming the antenna array pattern, considering 8-element uniform linear antenna
array, the following simulation results are obtained. These results can be extended to different
element numbers or other array geometries,

As depicted in Fig. 6, when the angle of interference signal is close to the angle of the main one,
the amplitude of the main signal (maximum gain of Array Factor (AF) that pointed to the source
signal) will be decreased. The performance of MaxSIR and MMSE methods are similar and they
have higher gain than MVDR method.

Figure 7 shows that the SNIR in MMGSE algorithm i1s higher than other methods. After that,
MVDR has high SNIE. In MaxSIR, because the angle of the main signal 1s not considered in
calculations, it has lower SNIR than others.

Asg illustrated in Fig. 8, Bit Error Rate (BER) for MMSE method is lower than other methods.
After that, before the angle of 5 degrees, MaxSIR has lower BER. In other words, in low angular
differences, MMSE has the best performance among all other methods. Despite the MaxSIR
algorithm, BER of other methods tend to zero for high angular differences, 1.e., the accuracy of
weighting algorithm for MMSE and MVDR methods are increased in high angular differences.

Figure 9 shows the variations of Normalized Mean Square Error (NMSE) in terms of different
signal to noise ratios. As depicted in this figure, NMSE in MMSE method is lower than others.
Max5IR 1s the second one. It means that, in low SNERs, the best algorithm in terms of NMSE, is
MMSE. In high SNEs, the performance of all methods is similar.

141 e MosSR

121 - MMSE

1.01

|AF] e
=
S
;

0.4+

0.24

0.0 T T T T T T T T 1
2 4 6 8 10 12 14 16 18 20
Angular difference between the main and interference signals (degree)

Fig. 6: Maximum array factor gain vs. angular difference
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(3) Adaptive processing: As previously shown in fixed-beam methods, statistically optimum
weight vectors for beamforming can be calculated by the Wiener sclution. However, knowledge of
the asymptotic Second Order Statistics (S0OS5) of the signal and the interference-plus-ncise was
assumed. These statistics are usually not known but with the assumption of ergodicity, where the
time average equals the ensemble average, they can be estimated from the available data. For
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Fig. 10: Adaptive antenna array structure

time-varying signal environments, such as wireless cellular communication systems, statistics
change with time as the source and interferers move around the cell. For the time-varying signal
propagation environment, a recursive update of the weight vector is needed to track a moving
mobile so that the spatial filtering beam will adaptively steer to the target mobile’s time-varying
DOA, thus resulting in optimal transmission/freception of the desired signal. To solve the problem
of time-varying statistics, weight vectors are typically determined by adaptive algorithms which
adapt to the changing environment. (Fuhl and Bonel, 1998, Haykin, 1996).

In adaptive beamforming, according to the system condition, antenna array and its radiation
pattern adjusted dynamically. Thus, in this system, there is a processing unit. Types of antennas
{sensors) and forwarding information to the processor depend on the application. For example,
communication system that uses information of different signals to process the main signal and
separating it from others is one of these applications.

Figure 10 shows a generic adaptive antenna array system consisting of an M-element antenna
array with a real time adaptive array signal processor containing an update control algorithm. The
data samples collected by the antenna array are fed into the signal processing unit which computes
the weight vector according to a specific control algorithm. Steady-state and transient-state are the
two classifications of the requirement of an adaptive antenna array. These two classifications
depend on whether the array weights have reached their steady-state values in a stationary
environment or are being adjusted in response to alterations in the signal environment. If we
consider that the reference signal for the adaptive algorithm is obtained by temporal reference, a
priori known at the receiver during the actual data transmission, we can either continue to update
the weights adaptively via a decision directed feedback or use these obtained at the end of the
training period.

Several adaptive algorithms can be used such that the weight vector adapts to the time-varyving
environment. at each sample. As depicted in Fig. 11, there are two major types of adaptive
weighting algorithms, i.e., training-based methods and blind methods. In training-based methods,
such as, Least Mean Squares (LMS) and Recursive Least Squares (RLS), one reference signal is
required. In contrast, in blind methods, such as, Constant Modulus (CM), Least Squares (LS),
Decision Directed (DD) and Conjugate Gradient (C(), the only thing that 1s required is the DOA
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of the main signal (source) and other information should be obtained from received signal. In the
following, Sample Matrix Inversion (SMI), LMS and RLS algorithms of training-based category
and CM, LS and DD algorithms of blind category 1s reviewed with more details. In addition, some
simulation results of LMS and CM algorithms are illustrated (Godara, 2004; Gross, 2005).

Sample Matrix Inversion (SMI) algorithm: If the desired and interference signals are known
a priori, (16) provides the most direct and fastest solution to compute the optimal weights. However,
the signals are not known exactly since the signal environment undergoes frequent, changes. Thus,
the signal processing unit must continually update the weight vector to meet the new requirements
imposed by the varving conditions. This need to update the weight vector, without a priori
information, leads to estimating the covarianee matrix, R, and the eross-correlation vector, r_,, in
a finite observation interval. Note that this is a block-adaptive approach where the statistics are
estimated using temporal blocks of the array data. The adaptivity is achieved via a sliding window,
say of length L symbols. The estimates K. and r ... can be evaluated as:

Ro=t 3 XOX @ (24a)
R, :% i X(i)d (@) (24h)

1=MN

where, N, and N, are, respectively, the lower and upper limits of the observation interval such
that N, =N, +L-1. Thus, the estimate for the weight vector is given by

W, R_“r, ™ (2h)

MSEest  Cvxmest ludest

The advantage of the method is that it converges faster than any adaptive method and the rate
of convergence does not depend on the power level of the signals. However, two major problems are
associated with the matrix inversion. First, the increased computational complexity cannot be easily
solved through the use of integrated circuits and second, the use of finite-precision arithmetic and
the necessity of inverting a large matrix may result in numerical instability (Li and Stoica, 2006),

Least Mean Square (LLMS) algorithm: The LMS algorithm is probably the most widely used
adaptive processing algorithm, being employed in several communication systems. It has gained
popularity due to its low computational complexity and proven rcobustness. It incorporates new
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observations and iteratively minimizes linearly the mean-square error. The LMS algorithm changes
the weight vector W along the direction of the estimated gradient based on the negative steepest,
descent method. By the quadratic characteristics of the mean square-error function K {|e (k)|% that
has only one minimum, the steepest descent is guaranteed to converge, At adaptation index K,
given a MSE function E {le (k)|%} = E {|d (k)-W". x (k)|% the LMS algorithm updates the weight

vector according to

aeiy|’ _

e W (k)+ ue* (k) x(k) (26)

W(k+1):W(k)—%.

where, the rate of change of the objective function |e (k)|? has been derived earlier in (14) and p
is a scalar constant which controls the rate of convergence and stability of the algorithm. In order

to guarantee stability in the mean-squared sense, the step size p should be restricted in the interval

2
0<pe—— (27)
<pss

where, 4. 1s the maximum eigenvalue of R, Alternatively, in terms of the total power of the x
P Strace{R 3 (28)

where
&1
trace{R } :2 E{x"}
1=1

is the total input power. Therefore, a condition for satisfactory Wiener solution convergence of the
mean of the LMS weight vector is

2
O<p<yg—— (29)

ZE{XIZ}

where, M1s the number of elements in the array. A significant drawback from the use of the LMS
algorithm 1s its slow convergence for colored noise input signals. The LMS algorithm 1s a member
of a family of stochastic gradient algorithmes since the instantaneous estimate of the gradient vector
is a random vector that depends on the input data vector x (k). It requires about 2 M complex
multiplications per iteration, where M is the number of weights (elements) used in the adaptive
array. The convergence characteristics of the LMS depend directly on the Eigen-structure of R__.
Its convergence can be slow if the Kigen-values are widely spread. When the covariance matrix
Figen-values differ substantially, the algorithm convergence time can be exceedingly long and
highly data dependent. Therefore, depending on the Eigen-value spread, the LMS algorithm may
not have sufficient iteration time for the weight vector to converge to the statistically optimum
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solution and adaptation in real time to the time-varying environment will not be able to be
performed. In addition, employing the LMS algorithm, it is assumed that sufficient knowledge of
the desired signal 1s known (Enosawa et al., 2006; Moghaddam et al., 2010a, b).

Recursive Least Squares (RLS) algorithm: Unlike the LMS algorithm which uses the method
of steepest descent to update the weight vector, the RLS adaptive algorithm approximates the
Wiener solution directly using the method of LS to adjust the weight vector, without imposing the
additional burden of appreximating an optimization procedure. In the method of least squares, the
weight vector W (k) is chosen so as to minimize a cost function that consists of the sum of error
squares over a time window, i.e., the LS solution is minimized recursively. In the methoed of
steepest-descent, on the other hand, the weight vector 1s chosen to minimize the ensemble average
of the error squares. The recursions for the most common version of the RLS algorithm are a result
of the Weighted Least Squares (WLS) objective function

‘e(k)‘zzikk".‘e(i)r (30)

where, the error signal e (i) has been defined earlier and 0<A<1 is an exponential scaling factor
which determines how quickly the previous data are de-emphasized and is referred to as the
forgetting factor. Usually, A is chosen close to, but less than, unity. However, in a stationary
environment. 4 should be equal to 1, since all data past and present should have equal weight.
Differentiating the objective function |e (k}|* with respect to W* and solving for the minimum yields

{ilk'l.x(i).xH(i)}.W(k)— ixk-‘ x()1d" @) (31)

Furthermore, defining the quantities

R (k):g T xDx ") (32)
and
pik) :Zxk-l x(Dd () (33)
the solution is cbtained as:
W(k)=R™" (k).p(k) (34)

The recursive implementations are a result of the formulations
Rk)=ARk -+ x(&)x" k) (35)
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and
p(K)=hplk D) +x(k)d (k) (36)

The R™! (k) can be obtained recursively in terms of R~ (k-1), thus avoiding direct inversion of R (k)
at each time instant k.

An important feature of the RLS algorithm is that it utilizes information contained in the input
data, extending back to the time instance the algorithm was 1mitiated. The resulting rate of
convergence is therefore typically an order of magnitude faster than the simple LMS algorithm.
This improvement in performance, however, 1s achieved at the expense of a large increase in
computational complexity. Other drawbacks associated with its implementation are potential
divergence behavior in a fimte-precision environment, and stability problems that usually result in
loss of symmetry and positive definiteness of the matrix R™' (k) (Balanis and Ioannides, 2007,
Chen et al., 2004; Santi Rani et al., 2009; Skolnik, 2002).

Constant Modulus (CM) algorithm: This algorithm is first proposed by Godard and it uses the
constant envelope feature that is existed in some techniques that modulate information in phase
or frequency of the signal such as, M-ary Frequency Shift Keyving (MFSEK) and M-ary Phase Shift
Keying (MPSEK) modulations. By calculating this envelope, adaptive beamforming algorithm can
be managed. CM algorithm uses a cost function, named as diffraction function of order p and after
minimization, the optimum weights can be obtained. The Godard’s cost function is shown in Eq. 36.

J()=F {(\y(k)Fpr)”} (37

where, p and q are equal to 1 or 2. Godard showed that if R is defined as in Kq. 38, the slope of the
cost function will be zero.

sk
o E{so]

B U | (38)
" Bfscof }
where s (k) is the memoryless estimation of ¥ (k) and then the estimation error is:
e(k)=y Wy &7 (R, ~[y &) (39)
If we assume that p = 1, the cost function has the form as in Kq. 40,
TR =E{(|y (k)] - R (40)
B{pf] (41)

T Efsa)

524



Trends Applied Sei. Res., 6 (6): 507-536, 2011

By rewriting the error signal in Kq. 38 and 41 can be derived.,

K =y - Y (42)
e(k) = yik) [y ()]
Updating equation of weights is:
Wk+ D=W &)+ pu N v (kixk) (43)
|y (k)|

It has been shown that the fastest convergence is obtained by using p = 1.

This method has some problems. One of them 1s that the algorithm simply locks on the strongest,
signal with constant envelope, even if this signal is interference. In multiuser environments, by
changing the initial condition of array, 1.e., array weighting before the starting time, we can lock
on different signals, if signals have the same power. Another problem of this algorithm is higher
convergence time in comparison with other algorithms that use MMSE criteria directly
{Ghadian and Moghaddam, 2010; Yuvapoositanon and Chambers, 2002),

Decision Directed (DD) algorithm: In this algorithm, a reference signal is generated based on
the cutputs of a threshoeld decision device. The beamformer cutput y (k) 1s demodulated to obtain
the signal q (k). The decision device then compares q (k) to the known alphabet of the transmitted
data sequence and makes a decision in favor of the closest value to q (k) dencted by r (k). The
reference signal is obtained by modulating r (k) then the cost function for the beamformer is
established. The DD algorithm convergence depends on the ability of the receiver to lock onto the
desired signal. Since, it may not always be able to do that, the convergence is not guaranteed
{Moghaddam and Saremi, 2010; Moghaddam and Saremi, 2008).

Least Squares (LS) algorithm: Using the standard array model, we can write the received signal
at the array output as:

X(k)=ASK)+N(k) (44)

where, X (k) =[x, (k), x, (k),..., 5, (R)]%, 8 (k) = [s;, (k), s, (k),..., s, (k)] is the signal vector
and Nk) = [n, k), n, (k),..., n,; (k)]" is the noise vectaor.

The LS algorithm minimizes the Maximum Likelihood (ML) criterion as Kq. 45 to find proper
A that equals to weighting vector (Balanis and Ioannides, 2007, Shirvani Moghaddam and Saremi,
2010).
X-AS| (45)

min, .,

Simulation results of least mean squares algorithm: This section shows some simulation
results of an antenna array considering LMS algorithm in different environmental conditions such
as noise, interference and number of array elements.
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Fig. 13: Normalized MSE vs. SNR for different number of ULA elements in a noisy channel

As depicted in Fig. 12 and 13, increasing the signal to noise ratic and also the number of array
elements are the reason for decreasing BER and NMSE. Higher number of array elements
introduces more computational complexity but it offers lower performance criteria (BER and NMSE)
rather than lower number of array elements. As it shows, in a noisy channel, BER will be equal to
zero in SNR =8 dB and SNR =0 dB for M =2 and M = 16, respectively. On the other hand, NMSE
will be equal to zero in SNR =15 dB and SNE =10 dB for M = 2 and M = 18, respectively.

Figure 14 and 15 show the simulation results of a receiver equipped with a uniform linear array
in the case of noisy channel with one interference signal that its power equals to source signal. It
means Signal to Interference Ratio (SIR) equals to 0 dB. Due to adding an interference, BER and
NMSE in the Fig. 14 and 15 are higher than those belong to Fig. 12 and 12,

To illustrate the effect of the power of interference signal, simulations are repeated for an
8-element ULA in SIR =0, 1, 3 and 10 dB. In SIR = 0 dB the power of source and interference
signals are the same and in SIR = 10 dB, source signal 1s 10 times stronger than interference
signal. Figure 16 and 17 show BER and NMSE of a LMS-based 8-element. ULA adaptive antenna
array system for different SIKs.

These simulation results show that the antenna array equipped with LMS algorithm introduces
good performance under different conditions. In noise dominant environment, increasing the
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number of array elements has a sensible impact on system performance. Also in channel with
interference signals, system 18 able to reject the interference signals. Besides, simulations show that
the performance of the system will be changed in terms of different SIKs.

Simulation results of constant modulus algorithm: In this section, performance of constant
modulus algorithm, in 8-element uniform linear array, different SNRs, two channels (pure noisy
and nocisy channel with one interferer) are evaluated based on BER, NMSE and polar radiation
pattern. Simulations are carried out under stationary scenarios. To get each result, simulations are
repeated 1000 times. In all simulations, the SOI-DOA (source signal) is 40°. Also, Binary FPhase
Shift Keying (BPSK) modulation is employed.

As depicted in Fig. 18, after 1000 snapshots, main lobe of antenna array pattern is adjusted to
40°C.

Figure 19 and 20 show BER and normalized MSE of a receiver equipped with digital
beamforming system based on CMA. This beamforming system includes 8-element ULA. As depicted
in these figures, BER and NMSE are increased whereas the number of iterations (snapshots) is
increased. It 1s obvious that after 1000 iterations, BER converge to 0.015 and NMSE converge to
0.01. In this interference-free simulation, the step size was set equal to 0.001,

After 1000 snapshots, BER and NMSE will be constant. In this situation, for different signal
to noise ratios, antenna array beamforming considering CM algorithm is repeated and output BER
and NMSE are plotted in Fig. 21 and 22. As expected, increasing SNR force BER and NMSE to be
decreased.

Figure 23 shows antenna array radiation pattern of a receiver equipped with 8-element ULA
applying CM algorithm after 1000 snapshots. As shown, the main lebe is pointed to SOI-DOA (40%)
and the first null is in the direction of interferer (20°). As depicted in Fig. 24 and 25, in the case of
noisy channel with one interference, also increasing the SINR is the reason for decreasing BER and
NMSE.

In this research, the effect of adaptive step size on the results is also investigated. One can
deduce from simulation results that increasing the power and number of interference signals 1s the
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Fig. 18: Polar radiation pattern of 8-element ULA in a noisy channel (SNR = 10dB, SOI-DOA=40°
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Fig. 19: BER vs. snapshots for 8-element ULA in a noisy channel (SNE = 10dE, SOI-DOA = 40°)
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Fig. 23: Polar radiation pattern of 8-element ULA in a noisy channel with one interferer (SNE =
10dB, SIR = 0dB, SCI-DOA = 40°, SNOI-DOA = 20°)
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reason to decrease the CMA step size and to increase the number of array elements. In addition,
some new modified versions of CMA are introduced in Ghadian and Moghaddam (2010).

Comparing adaptive processing algorithms: Table 1 compares three training-based and two
blind methods and show advantages as well as disadvantages. As we know, training-based methods
have areal convergence point but they require a training sequence or reference signal. In contrast,
blind methods may be diverged and their performance depends on channel conditions, however,
they don’t have a large amount of information as training-based methods (Ia and Stoiea, 2008,

Liberti and Rappaport, 199%9).

Table 1: Comparison of adaptive beamforming techniques

Algorithm Advantages Disadvantages

LMS Always converges Requires training sequence

SMI Always converges, Faster than LMS Requires training sequence, Computationally complex
RLS Always converges, 10 times faster than LMS Requires training sequence and R, !

CM Does not require training sequence Theoretically may not converge

DD Does not require training sequence High dependency on quality of the received signal
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CONCLUSIONS

Today, wireless communication systems have progressed in the way that their effects on various
aspects of human life are very obvicus. Smart Antenna systems have received much attention in
the last few years because they can increase system capacity (very important in urban and densely
populated areas) by dynamically tuning out interference while focusing on the intended user along
with impressive advances in the field of digital signal processing.

In this study, antennas are divided into 5 categories, i.e., omni-directional, directional, different
windows, phased array and digital beamforming (DBF) methods. The Fixed beamfeorming
approaches, mentioned in which included MMSE, MaxSNIR and LOCMY methods were assumed to
apply to fixed arrival angle emitters. If the arrival angles don't change with time, the optimum
array weights won't need to be adjusted. However, if the desired arrival angles change with time,
it 13 necessary to devise an optimization scheme that operates on-the-fly so as to keep recalculating
the optimum array weights. The receiver signal processing algorithm then must allow for the
continuous adaptation to an ever-changing electromagnetic environment. The adaptive algorithm
takes the Fixed beam forming process one step further and allows for the calculation of
continuously updated weights. The adaptation process must satisfy a specified optimization
criterion. Several examples of popular adaptive algorithms include training-based, LMS, SMI and
RLS and blind ones such as CM and DD algorithms. We discussed and explained each of these
techniques. According to simulation results of fixed-beam as well as adaptive processing, it is
obvicus that by appropriate beamforming methods in transmission or reception, better radio signals
with lower energy consumption, higher SNIR and lower BER and NMSE will be achieved.

In recent years, researchers focused on DBF in wireless cellular systems, satellite networks and
wideband systems such as WiMAX (Etemad, 2008, Hoymann and Wolz, 2006) and according to
capabilities of these techniques and baseband processing, it will be a great technology in the future.
As a summery, some research subjects on digital antenna array signal processing are as follow:

*+  Applications and performance evaluation of adaptive array beamforming in wireless
communications and breadecasting networks (Hoymann and Wolz, 2008; Pattan, 2000;
Shaukat, et al,, 2009)

+ New array geometries 1-D as well as 2-D and 3-D same as L-shape, 2L-shape, Z-shape,
Displaced Sensor Array (DSA),. .. (Azevedo, 2009; Huang ef al., 2010; Shubair and Al Nuaimi,
2008; Liu et {., 2007)

+ Low complexity and fast weighting algorithms (Moghaddam et al., 2010a, b; Wang ef al., 2009,
Yang et al., 2008)

+ New ideas to avoid divergence (Miranda, 2008)

+  Coupling effects of array elements on array processing (Tuncer and Friedlander, 2009;
Yuan et al., 2008)

+ New aspects on DOA estimation (Chandra, 2005; Foutz ef «l., 2008; Gershman et al., 2010;
Jalali et al., 2007; Tuncer and Friedlander, 2009)

*+  Wide-band adaptive array signal processing and beamforming such as, Tapped Delay Lines
{TDL) and Sensor Delay Lines (SDL) and frequency independent DOA estimation (Tuncer and
Friedlander, 2009; Liu et 1., 2007; Zhang et al., 2010a)

+ Considering the effect of multipath fading on adaptive array processing (Yu ef al., 2010;
Zhang et al., 2010b)

* Antenna array signal processing based on Higher Order Statistics (HOS) (Karfoul ef al., 2008)
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¢« New LMS-based algorithms such as, Variable Step Size LMS (VS5-LMS) and Normalized LMS
(NLMS) (Wang ef al., 2003)

+ New versions of constant modulus algorithm such as, Constrained Constant Modulus (CCM),
Time Averaging Step Size (TASS) and Modified Adaptive Step Size (MASS) (Bouacha ef al.,
2008; Ghadian and Moghaddam, 2010; Wang et al., 2009; Zarzoso and Comon, 2008)

«  Combined algorithms such as, RLS-CMA, LMS-RLS, LS-RLS, SMI-CMA, SMI-LMS, LS-CMA,
Bartlett-CMA (Bouacha et al., 2008; [jigan, 2007; Nooralizadeh and Shirvani Moghaddam,
2009; Nooralizadeh et al., 2009; Moghaddam and Saremi, 2008, 2010)

« LMS and CM algorithms based on direction and relative velocity of source signal

{(Moghaddam et al., 2010a, b)
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