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ABSTRACT

In this study, a structural system identification technique using least square minimization of
the finite element residuals error function is developed. In this technique, the structural stiffness
of a two dimensional plane stress, plane strain and plate element are recovered. The recovery of
element stiffnesses is considered as an inverse analysis problem and can be achieved by application
of known static loads and measure the response of the structure which represents the structure
associated displacements. The developed technique is based on formulation of the errors Jacobian
matrix and minimizing the error of residuals function. Once the stiffness matrix of a structure is
determined, the internal design forces due to any loading condition can be easily obtained. Two
system identification problems, as numerical examples, were used to test the validity of the proposed
technique. In these problems, the mechanical properties of plane stress and plate structures were
retrieved. The displacements due to an applied loading are supposed to be measured for each
structure, but in this work as a verification of the propoesed appreach it can be computed using any
of the standard FE computer programs. The results show that this technique can accurately
retrieve the structure stiffness matrix by using one or two loading cases.

Key words: System 1dentification, inverse analysis, structural analysis, damage assessment, error
minimization, Jacobian matrix

INTRODUCTION

Structures identification is very useful for the monitoring and rehabilitation process of the
structures to ensure the structural safety. Damage detection technique is critical for decision
making of repair, replacement and maintenance of structures (Helou, 1993). Deterioration and
partial damage of an existing old structure usually caused a local reduction in the stiffness matrix
{Jahn and Mehlhorn, 1998). The member properties do not conform to its original designed value.
The evaluation of the existing system properties such as stiffness matrix may be affected by certain
physical limitations such as material deterioration resulting from corrosive environment, cracks in
reinforced concrete structures and also partial local structural damages (Yang et al., 2003). This
is frequently encountered in industrial buildings and reinforced concrete structures as a result of
leads, temperature or shrinkage where cracks begin to develop. The formulation of cracks is
unavoidable in reinforeed concrete structures, but it 1s necessary to limit the cracks’ size according
to several codes of practice. Cracks cause reduction in the stiffness matrix (Ngo and Scordelis,
1967). This stiffness reduction changes the bhehavior of the structure and its response due to
different loading conditions. Using standard structural analysis, the response of the structural
systems to any set of loading conditions depends on the availability of the stiffness matrix,
{(Hinton and Owen, 1980; Zienkiewicz and Taylor, 2000),
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The stiffness matrix of the structural element depends mainly on the element’s modulus of
elasticity. In case of old structures that have been in use for long periods of time or when the
construction materials have greatly deteriorated, the stiffness matrix cannot be accurately
computed due to the change in elements properties (Arafa and Helou, 1994). Thus, the structure
analysis leads to approximation which undoubtedly causes erroneous results or inaccurate ones at
best.

Identifications of system parameters such as the stiffness matrix usually require a mathematical
model of the structure in combination with experimental data. The identification approaches are
mainly based on the change in the natural frequencies, mode shapes or measured modal flexibility.
The natural frequencies are the most common dynamic parameters for system identification
{Yang and Huang, 2007; Lu and Law, 2007, Furuta ef al.,, 1991; Gounaris and Papadopoulos,
1997; Lee and Jinho, 2002; Nikolakopoulos et af., 1997, Wu and La, 2006; Per and Thomas, 2008;
Narkis, 1994).

In the studies of Jahn and Mehlhorn (1998) and Erex and Mehlhorn (1998}, a modal test data
and the structural dynamic analysis (natural frequencies) was used to identify the area and crack
locations 1n reinforced conerete beam and bending plate.

A Combined numerical experimental model was developed by Araujo et al. (2000) for
identification of damage locations and mechanical properties of structural plate.

The estimated starting parameter is corrected by minimization of differences between measured
and corresponding analytical data. The stiffness matrices of truss and frame elements were
retrieved by and Arafa and Helou (1994) using system identification based on least square
minimization.

In this study, a technique to solve the inverse problem mentioned above is developed. The
identification of a two dimensional plane stress, plane strain and plate structure stiffness matrix
is achieved through measurement of the response of the structure due to applied known load. The
element stiffnesses are recovered through application of known static forces at the elements nodes
together with the measurement of the associated displacements. Then, using the least square
minimization the stiffness matrix can be retrieved using Jacobian matrix of the Error function

J.

two dimensional structures (Zienkiewicz and Taylor, 2000).

The structural system is to be modeled using a finite element method which can easily model

Errer

Formulation of element stiffness matrix: In the isoparametric element concept used in the
finite elements method, the same shape functions are used to describe the elements geometry as
well as the displacement within the element. The interpolation functions must satisfy at least the
CY continuity, where the C° continuity means that the function itself is continucus and C™
continuity means that functions derivative up to the order of (m) are continuous (Zienkiewicz and
Taylor, 2000). The shape function 1s defined as follows:

Nl(&J’nJ):Bu

where: (1)
] ” .

51]—{ 1 1 J fori,jel,---,n
0 if i#]
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X= iN1(E-‘1’T]1)'X1
1:1 (2)
y=2N (&)
The global displacement is calculated based on the nodal displacement:
U= 3N (&)
3)

V= ;N1 (ii:n1)'v1

Where:

n: No. of nodes per element,
%, and y;:  The x and ¥ coordinates of the nodal joints
u; and v;: The x and y displacements at the nodal joints

The strain vector can be formulated as:

e=Bu"
% 0
EX a {u} (4)
g 1= 0 —
ay | |V
=l 1o 9
x|

Using isoparametric element, the B matrix (Hinton and Owen, 1980) is defined as:

E:iBJ_diT (5)
i=1

oN, 0
ox

p=| o M (6)
dy
oN, N,
| ox Oy |

The stress matrix can be determined using the following equation:
o=De (7)

where, D is a matrix relating stress to strain and depends on the type of the element.
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1 v 0
D=|v 1 0

001—%

where, k represents a material constant.
For plane stress element:

k- 17Ev2
while for plane strain element.
_ E
(1+v)(1-2v)
and for kirchhoff plate bending element.
- Et

12(1-v%)

The stiffness matrix can be defined by the following expression:

K* = J'IJ'BT DBAV
v

For two dimensional element with constant thickness t:

K° = t”BTDdedy
A

Using isoparametric formulation:

K= j jBTDBJdgdn

-1-1

where, J 15 defined as the Jacobian matrix and can be written as:

ay aN, AN,
| Y %% Y %

ay aN, N,
) |2 2 Y

EdlEar

Finally, the stiffness of an individual element. is expressed as:
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1e1
Koot |t ¥ (13)

€

e e
a3y

Sys - - oat

mm

Where:
m: The total number of degrees of freedom per element

a;: The coefficient, of the element stiffness matrix of element e at degrees of freedom i and j in the
global coordinate system

The total structure stiffness matrix over the total degrees of freedom can be formulated from
individual elements stiffness matrices:

Ealllkl Zaiuk1 Zallmk1
i=1 i=1 i=1
K= §a32k1 ;agmki (14)
Sys Y al_k
L i=1 J

Where:
n: The total number of elements in the discretized finite element mesh.
m: Total number of degrees of freedom.

a;: The coefficient of the element stiffness matrix of ith element in the global degree of freedom k
and ]

The Jacobian matrix of the error function: The structure system equation is written as:

F=Kd (15)
Where:
F: The applied force
{F,F, . F } (16)
K: Total stiffness matrix
d: The structure displacements
d={d,d,..d} (17

For inexact solution, the following error vector of residual can be implemented as follows:

e=F-Kd
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1 n ]
1 1
E ak; 2 Bk
i=1 i=1
I .
1 1
Zazzkx Zalmk1 d,
i=1

[(n
1
23111(1
i=1

Sys a,_k

(18)

The error function Error is defined as the sum of the square of the errors over the number

degree of freedom:

11
Eror =)' e
i=1

(19)

To minimize the error function, the derivative with respect to each unknown element’s stiffness
will be set equal to zero, this is so called least square minimization (Hinten and Campbell, 1974).
Taking the first derivative of the Kq. 19 with respect to ki, k,, ... k, yields the following set of

equation:

F1 _22 iikjdl

By defining the Jacobian Matrix of the error function as follow:

Emror

g,
ak,
de,

I, =10k,

111

1
E ad,
i=1

m

n
E a,d,
i=1

1

1
2 a;d;
i=1

1

n
E ad,
i=1

de,,

[ B

i=1 j=1 i=1
1 noom
n n n i
1 Eade o Eahdm 1:‘m - alikjdm
i=1 =1 i=1
de de o .
1 1 2 1 n
B e o Pad
i~ 1M1
ok, dk, “ P
de de o o
2 2 2 1 n
LN ) NI
_ i e} 2
akZ akn 1=l i=1
aen aem 3 1 d N nd
gk ak audy, - Eah m
2 n i=1 i=1
171 11
1 n
w Eahdl Eahdl
1 i=l i=1
2 a;d,, w w
i=1 1 n
: Zazidz Eamdz
- i=1 i=1
m -
0 N
Yaida| |,
i=l 1 n
E a11dm ay dm
i=1 i=1
m
1
E ayd,, | | B
i=1

o :
n

2 apd,, | |E

i=1
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The previous equation can be written in a reduced form:

]gn’or JErrork = ngrF (23)
This yield:
k=(Tf T ) (T F) (24)

J.

Errer

In some cases, J7 may not be invertible. Two or more loading cases must be used to

Erroe

obtain the elements stiffnesses as follows:

k =[§ [Teer | Dier | T [%[ng 1 {¥}, J (25)

i=1 i=1

Displacements measurement: The proposed method requires a complete set of displacement
measurements at every degree of freedom of the finite element model. This can be avoided by using
of interpolation techniques (Hinton and Campbell, 1974). Many computer applications like
MATLAB (2009) offer one, two and three dimensional interpolation routines, which can he used
to interpolate the displacements at all nodes by measurement of the displacements at sufficient
defined nodes. The rotations at a certain peint of a structural plate represent the derivatives of its
deformed shape at that point with respect to the plate plane axis. These derivatives can be
computed using numerical differentiation with the help of the measured vertical displacements at
different elements nodes in the neighbourhood of that point.

Computer implementation of the proposed technique: The elements material constants to
be identified are; the Modulus of elasticity of each element of the FE model 1s set to be as unknown
variable. Figure 1 shows the methodology flow chart of the proposed method for system
identification. The proposed method was implemented in a computer program using MATLAB
{2009) environment with symbolic toolbox.

Numerical example: The following examples demonstrate the wvalidity of the proposed
technique for retrieval of the structure's unknown stiffnesses for plane stress and plate
element. These examples are considered as numerical experiments in which displacements
associated to an applied load were actually computed using standard  direct stiffness
methods.

Example 1 (plan stress elements): The thin plate shown in the Fig. 2 is used to test the
procedure. The plate 1s subjected to the loading shown, the plate thickness t =1 em and v = 0.30.
This example was also solved with the example given by Logan (2002).

The plate will be discretized into two Constant Strain Triangular elements strain (CST). Each
element consists of three nodes with two degree of freedom for each node.

The global reduced stiffness matrix was obtained from standard finite element analysis for the
degree of freedom at joint 3 and 4. Element No. 11s connected to jeint 1, 2 and 3, as shown in
Fig. 3.

The stiffness matrix of element No. 1 corresponding to degree of freedom of node 3 and 4:
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Do 5 6 T §

208, 0 00

.S 0 7E, 0 0
T AA(L-vD| 0 00
0 0 00

<R

Finite-element discretization of
the structure

v

Calculate the total stiffness matrix K
assume E, as unknown for each element|

»
>,

Applied a new loading case F and measured
the associated displacement D at different nodes

Estimate the displacement at all nodes by
interpolation of the measured
NO displacements

v

Calculate I
(Eq. 20)

T
Retrieve stiffness Matrix K, for each element
(Eq.23 or 24)

GO

Fig. 1: Flow chart for the proposed methed

10 cm

Fig. 2. Axially loaded plate
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Fig. 3: Element No. 1

Similarly, the stiffness matrix of element No. 2, which connected to joint 1,

corresponding to degree of freedom of node 3 and 4 is:

L.

DOF 5 6 7 8
28E, 0  -28E, l4E,
. s 0 S0E, I2E, -80OE,
CAA(-v)| -28E, 12E, 48E, -26E,
14E, -80E, —-26E, 87E,
The total stiffness matrix of the reduced system is:
20E, + 28E, 0 ~28E, 14E,
. . 1 0 7E1+80E, 12E, -80E
K=K +K*'=——-x
80x0.91 -28E, 12E, 48E, -26E
14E, “80E,  -26E, 87E,
The error vector can be written as:
e=F-Kd
e [E 20E, +28E, 0 —28E, 14E,
e, |E . 0 7E1+80E, 12E, -S8OE,
e,| |E[ 80x001 ~28E, 12E, 48E, -26E,
e,| |E 14E, ~80E,  -26E, 87E,
The Jacobian Matrix of the error function 1s:
20d, 28d, - 284, +14d,
1|74, 80d, +12d, - 80d,

o=
FR0%0.91] 0 —28d, +12d, +48d, - 26d,
0 14d,-80d,-26d, +87d,
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The following i1s the equivalent joint load action for the loading shown, together with the
associated displacement used in the present numerical experiments. [t was assumed that:

E, =200 Gpa, E,=180CPa

12.95

5
0 0.638

F={ 'kN and D= 10 em
5 14,758

0

2914

Upon performing the operation described in Eq. 23 the elements stiffnesses can be obtained.
They are the same as the assumed value in the numerical experiment.

k= (J;ermr JEn’m’ )71 (J}Tin'ur F) = {f;)g} GPa

It is noted that the result match the assumed input values for elements stiffnesses

Example 2 (plate elements): The stiffnesses of a steel plate with 4x4 m width and 10 em
thickness is to be identified. The plate is fixed along all four edges as shown in the Fig. 4.

The plate will be discretized into four rectangular bending plate elements. Kach element
consists of four nodes with three degree of freedoms for each node; namely vertical displacement
and two rotations. Each element will be assumed to have independent modulus of elasticity as
shown in Fig. 4.

The reduced stiffness matrix of element No.1 can be formulated as follows:

o6l 6l
35 420 420

6l 19 1

KI:E1 - — -

420 105 28

oL 119

420 28 105

E, E,
4m

E, E,
L 4m X

Fig. 4: Flate geometry
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The total stiffness matrix of the reduced system is:

K=K'+K'+K'+K' =

14

15

DOF 13
[11(E,+E,+E,+E,) 61(-F,~E,+E,+E,) 61(E,-E,~E,+E,)]
35 420 420
19(E, +E, +E, +E,}) (-E +E,-E,+E,)
105 28
19(E, +E,+E, +E,)
5]
L ym 105 ]
The error vector can be written as:
e=F-Kd
[11(E,+E,+E,+E,) 61(-E,-E,+E,+E,) 61(E,-E,-E,+E,)|
. E 35 420 420
! F7 19(E, +E,+E,+E,) (-E +E,-E,+E,)
e, 1= -
: lj 105 28
RIS 19(E, +E,+E, +E,)
sym
] 105 |
where:
E E, d, W
E=1F, and dy (= 18y
F, Feyj d, Bys
The Jacobian Matrix of the error function is:
e=F-Kd
11 61 61 61 19 1 61 1 19 |
e Ayt dy - dy b ody - ody d - dy
35 420 420 420 103 28 420 28 105
11 61 61 61 19 1 61 1 19
e d oy dp b dy b ody - d o dg g
- 35 420 420 420 105 28 420 28 105
Error
11 61 61 61 19 1 61 1 19
e dg b dy dp - d - dy T dy - d b d
35 420 420 420 105 28 420 28 105
LI I IR I CIPIR IR R PR LY
|35 420 420 420 105 28 420 28 105 |

The displacements at the plate midpoint d7, d8 and d9 are supposed to be measured, were in
this numerical experiment it can be computed using any of the standard FE computer program. It
was assumed that E,=180 Gpa, E,=190 Gpa, E;=200 Gpa and E,=210 Gpa
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Loading case No. 1: The plate is loaded with one central concentrated load of 100kN, as shown

in Fig. b.
E E, -100
B =B, (= 0
F, 0
5 Fy,
and the resulted displacements are:
d, w.] [-40832
dyr= {0, t=1 16807 (x107°
d 8 -0.085006

The Jacobian Matrix of this loading case 1s:

-13.078 -13.076 -12.588 -12.590
Toe =| 62349 62342 -5.6260 -5.6266 |x10°
-5.9920 5.9889 5.8689 -5.8719

The matrix J7;, ., is ill conditioned and almost a singular matrix. Thus it is invertible for this

load condition. Therefore another independent loading condition 1s needed.

Loading case No. 2: The plate is now loaded with a new independent loading case shown in

Fig. 6.
E, E, -3
F{=1F (=11
F, -1
5 E,
the resulted displacements are:
100 kN

Fig. 5: Loading case No. 1
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3 kN/m®

s l.l.w__i

i

Fig. 6: Loading case No.

d, wo| [-124.19
d,t= {0, | =176322 %107
d, 6| [-71.236

-6.046 -3977 -1.760 -3.829
3439 2930 -0.168 -0.677|<107°
-3.365 7.872 0242 -2.820

Emor —

The matrix J7
Now apply Eq. 25 to evaluate the value of unknown element stiffnesses:

J of this leading condition is ill conditioned and almost a singular matrix.

Error

e[ S0 e | (S0 1 18

i=1 i=1

k={180 190 200 210} GPa
This is exactly as the assumed values in the numerical experiment.

CONCLUSION

A system identification technique based on the least square minimization was developed. The
retrieval of plane stress, plane strain, axisymmetric and plate element stiffness matrix was achieved
by measurement of the structure response due to an applied load. Two numerical experimental
examples were used to test the validity of this technique. In these examples, the displacements due
to an applied leading are supposed to be measured, but in these numerical experiments it can be
computed using any of the standard FE computer programs. The results show that this technique
can accurately retrieve the structure stiffness matrix by using one or two loading cases. A complete
set of readings must be available at every degree of freedom of the structure using the proposed
method. This shortcoming can be avoided through using data interpolation and further research
in this area is still required.
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