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ABSTRACT

The aim of this study was to fit a multinomial logit model and check whether any gain achieved
by this complicated model over binary logit model. It 18 quite common in practice, the categorical
response have more than two levels. Multinomial logit model is a straightforward extension of
binary logit model. When response variable 1s nominal with more than two levels and the
explanatory variables are mixed of interval and nominal scale, multinomial logit analysis is
appropriate than binary logit model. The maximum likelihood method of estimation is employed to
obtain the estimates and consequently Wald test and likelihood ratio test have been used. The
findings suggest that parameter estimates under two logits were similar since neither Wald statistic
was significant. Thus, it can be concluded that complicated multinomial logit model was no better
than the simpler binary logit model. In case of response variable having more than two levels in
categorical data analysis, it is strongly recommended that the adequacy of the multinomial logit
model over binary logit model should be justified in its fitting process.

Key words: Nominal response, multinomial logit, likelihood ratio test, Wald test, odds ratio,
deviance

INTRODUCTION

Situations associated with various field of applied sciences involving categorical responses are
quite common in practice. A categorical variable is one whose numerical values serve only as levels
distinguishing different. categories. Regression procedures aid in understanding and testing
complex relationship among variables and is forming predictive equations. Generally, logistic
regression technique is one such procedures and the most modern practice over discriminant
analysis which allows categorically and continuously-scaled covariates to predict any
categorically-scaled response (Darlington, 1990, Logistic regression analysis extends the
techniques of multiple regression analysis to the situations in which the response variable is
categorical and makes no distributional assumption about the variables. It is a direct probability
model having capability to provide valid estimates regardless of study design (Harrell, 2001). Thus,
it has become popular and widely used modeling technique with categorical data analysis in many
fields. Logistic regression analysis is one of the most frequently used statistical techniques and is
especially familiar in epidemiological research but subsequently the technique has been extended
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and become tremendous growth in the use within social sciences, marketing applications,
demographic and educational researches since the last two decades (Pohlmann and Dennis, 2003;
Peng et al., 2002; Chuang, 1997).

It is not. uncommon in practice that the categorical response has more than two levels. Several
problems frequently encountered in the field of applied sciences involve a nominal response
variable having multiple categories and a combination of interval and nominal scale explanatory
variables. When response variable 1s nominal with more than two levels and the explanatory
variables are mixed of interval and nominal scale, multinomial logit analysis is appropriate. A
multinomial logit model is used for the data in which the response 1s often a set of choices and 1s
therefore measured on a nominal scale. In the cases, where the responses are not ordinal in nature
and the levels are unordered, multiple logistic regression is one often-used strategy to investigate
the relationship between nominal responses and a set of explanatory variables. This modeling
technique 1s flexible enough to deal with a variety of common applications and computationally
affordable (Chan, 2005; Long, 1987).

Multinomial logit model 1s similar to dichotomous or binary logit model; except that the response
variable is in the case will have multiple discrete responses instead of just two. This model is special
case of discrete choice or conditional logit models introduced by MelFadden (1974) which generalizes
binary logistic regression by allowing more than two discrete responses. It is a generalized linear
model that is used to predict the probabilities of the different possible responses of a categorically
distributed response variable, given a set of explanatory variables. The multinomial logit assumes
that data are case specific; that is, each response variable has a single value for each case. The
multinomial logit model also assumes that the response variable cannot be perfectly predicted from
the explanatory variables for any case. Collinearity is assumed to be relatively low, as it becomes
difficult to differentiate between the impacts of several variables if they are highly correlated.

It 18 clear from the fact that multinomial logit model can be seen as a straightforward extension
of binary logit model. Consequently levels of multinomial logit model can be collapsed and reduced
the model as a binary one. This reduced model provides a good approximation to both the estimates
of the coefficients and their corresponding standard errors (Begg and Gray, 1984). The purpose of
the present study was to build a multinomial logit model with a response variable having more than
two levels and test whether significant differences in the separate odds ratios produced by different.
logits over all model covariates and checks the adequacy or gain achieved with multinomial logit
model over binary logit model.

MATERIALS AND METHODS

The Bangladesh Demographic and Health Survey (BDHS) 2007 was the fifth survey conducted
under the authority of the National Institute for Population Research and Training (NIPORT) of
the Ministry of Health and Family Welfare, Bangladesh since 24 March to 11 August, 2007. It was
a nationally representative multistage cluster sample survey designed to collect data and provide
information on basie national indicators of social progresses. The BDHS was implemented through
a collaberative effort among which Macro International provided financial and technical assistance
for the survey through United States Agency for International Development (USAID). BDHS 1s
a periodic survey conducted in Bangladesh as a part of the worldwide Demographic and Health
Surveys program, which is designed to collect data on fertility, family planning and maternal and
child health and serves as a source of population and health data for policymakers, program
managers and the research community. The data were published for the research community on
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March, 2009. A total of 10819 households were selected for the sample, of which 10400 were
successfully interviewed. In those households, 11178 women were identified as eligible under
reproductive age for the individual interview and interviews were completed for 10996 of them. But
in the current analysis, only 2357 eligible women having two living children and able to bear and
desire more children are considered on the ground of tweo children family norm campaign globally.

The selected eligible women were asked how long they would like to wait from now before the
birth of alanother child. A response corresponding to wants within two years, wants after two years
and wants no more are denoted as level 1, 2 and 3, respectively and used as a discrete choice
outeome variable Y in the current study. Respondent’s place of residence (X,), wealth index (X)),
professional status (X;) and presence of sex preference (X)) are considered as potential covariates
to develop a multinomial logit model with response variable Y. The explanatory variables, place of
residence X, is leveled as 1 for ‘urban’ and 2 for ‘rural’, wealth index X, 1s leveled as 1 for poorest’,
2 for ‘poorer’, 3 for ‘middle’, 4 for ‘richer’, 5 for richest’, professional status X, is leveled as 1 for
‘professional’ and 2 for house wife’ and presence of sex preference X, is leveled as 1 for having
preferences about child’s sex’ and 2 for no preferences about child’s sex’ in the study.

MULTINOMIAL LOGIT MODEL

In statistics, multinomial logistic regression sometimes called the multinomial logit model is used
for prediction of the probability of cceurrence of an event by fitting data to a series of logit functions
applying logistic distribution. To fit a multinomial logit model having more than two levels of
response variable, one must pay attention to the measurement scale (Hosmer and Lemeshow,
2000), Levels associated with the response variable in the current study are nominal scale. Let Y
be a multi-categorical response variable having L nominal levels. Generally, one value typically the
first, the last, or the value with the highest frequency of the response variable is designated as the
baseline or reference category. The probability of membership in other categories is compared to the
probability of membership in the reference category. For a response variable with L categories,
multinomial logit model describes:

o LD
2

possible pairs of log-odds for comparisons but it 1s not necessary to develop all logistic regression
models instead only some choice of (Li-1) pairs are necessary and the rests are redundant.

To formulate the generalized multinomial logit model, let there are k explanatory variables and
an intercept term denocted by the Xi=(x,%u.%. %) vector of length (k+1) where x,; = 1 in the
analysis invalving n independent subjects. The general expression for conditional probability of the
1th level of response variable be present given the explanatory variables, is expressed by:

vy

M =P(Y=IX)= 5 i=12.L;i=12.n (1)

Z aiin
t=1

where, ¥, =Y Y, Yo - ¥ 18 a vector of unknown parameters. Without loss of generality, L
L

codedLvariableS Y., Yiy..., Yy with corresponding probabilities 1, M, .. ., Ty, such that: Yy, =1

and: Y n, =1 for the ith subject can be generated from the response variables Y having L nominal

I=1
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levels. In order to construct the logit function, one level should be chosen as the baseline or
referent level and all other levels can be compared to it. The choice of referent level though is
arbitrary, generally the last level having highest frequency of the response variable is chosen as
referent level (Kutner et «l., 2005). Multinomial logit moedel in general not a linear model in the
parameters, logit transformation can be used to make it approximately linear by the principle of
generalized linear model (McCullagh and Nelder, 1989). Using the last level L. as referent level,
only (Li-1) meaningful comparison can be done with respect to the referent level to describe the
relationship between the response variable and the explanatory variables. Thus the logit for the
Ith such comparison with respect to referent level is given by:

W, = log{ L } =Yt Xy YKy Yk = Xiypl =12, (L-1 (2)

HI.

In terms of the logit-function and using the condition ¥; = 0 the general expression for the
conditional probability given in Eq. 1 can be written as:

W
n, =P[Y=1X]=——; I=1,2 (L-D) 3)

1+ Ze“"
t=1

Since the multinomial logit model with neminal responses is a straightforward generalization
of binary logit model, it can be easily collapsed into a binary logit model considering pooling multiple
cutcome categories into a binary ‘ever’ versus never’ outeome, in case of no gain achieved by the
multinomial logit maodel.

MAXIMUM LIKELITHOOD ESTIMATION

After formulation of the multinomial logit model, the next step is to describe the methods for

obtaining estimates of the (L-1) vectors of parameters y,, v,, . . ., Yo, given by:
Yin Tu Yo
T Ta Ty
M= Y p V2= Yoz foos Yoy =] Yiep
Tix T Yooy

Multinomial logit model quantifies the effect of an explanatory variable in terms of the log-odds
ratio using Maximum Likelihood Estimation (MLE). The more efficient and precise approach from
the statistical viewpoint is to obtain estimates of the (L-1) logits simultaneously instead of
sequential binomial legits. To do so, the likelihood for the full data set is required. In order to
construct the likelihood function, let the Ith category for the response variable Y is selected for the
ith response. More specifically, for the ith case, Y,=0, Y,=0,..., Y;=1,..., Y;=0. The probability
of this response 1s given by:

POY, =1)= 1 = (Y () () ¢ (e F = T(me)™ (4)

=1
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For n independent chservations and L levels for the response variable Y, the likelihood function
can be constructed by:

0112001 T1n)* ®)
Taking natural logarithm and using the fact that.

L
ZYH =1

=1

for each 1, the log-likelihood function is given by:

Loga(cp)=g[f(Yﬂ%)—Loge{nfe% H )

I=1 I=1

The likelihood equations can be found by taking the first partial derivatives of Log, () with
respect to each of (Li-1) x (k+1) unknown parameters. The maximum likelihood estimates T, T,,. ..,
Ty, of are those values of %.%:. %y, that maximize Kq. 6 and can be obtained by setting the
likelihood equations equal to zero and solving for the vectors of parameters. These likelihood
equations are non-linear in parameters and can be numerically solved by Newton-Raphson method.
Hence one must rely on standard statistical software programs and iterative computation that is
used to obtain these estimates. On the other hand, in order to test the significance of covarates, the
matrix of second partial derivatives is required to get the information matrix and the estimator of
the covarianece matrix and consequently the standard error of the maximum likelihood estimators.
The generalized form of the elements in the matrix of second partial derivatives is given in Eq. 7
and 8, respectively.

SZLog (q)) n (7)
it = S XXM (1150 vEv =01k

&Y 8% ; v i( 5)

&Log, (q)) n (8)
= ) KKy s {2 =12, (L1

S (L)

The estimated or observed information matrix, denoted by 1{7}, is the (L.-1) (k+1) x (L.-1) (k+1)
matrix whose elements are the negatives of the values obtained from the Eq. 7 and 8 evaluated at
¥. The estimated standard error (SE) of the maximum likelihcod estimator is obtained from the
positive square root of principal diagonal of inverse of the observed information matrix like
SE(7)=I"(7) . Although computationally different, the multinomial logit model produces results that
are nearly identical to the general 2x2 contingency table having observed cell frequencies a, b, ¢,
d (Collett, 1991). It is notable that in the multinomial logit model, the MLE estimation of the
standard error of the estimate 1s quite close to the estimated standard error derived by using Woolf
{1955) approach given by:

1

S.E(?Iv):[f+7+7+f]2 =12 (L-1); v=0,12--k ©)
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Hence the estimator of the variance of the difference between two coefficients, (¥, —¥. 1210 1s
given by:

V(3 — 3 )= (3, )+ V() - 200v(3, .5, ) (10)

The values for the estimates of the variances and covariances can be obtained from software
program SPSS through a listing of the estimated asymptotic covariance matrix. The form of this
matrix is a little different from the covariance matrix in the binary setting. There are two matrices
containing the estimates of the variances and covariances of the estimated coefficients in each logit
and a third containing the estimated covariances of the estimated coefficients from the different
logits. Such matrix for the multinomial legit model is not exhibited in the current analysis. In order
to interpret the effect of covariates on response variable, a measure of association called odds ratio,
a powerful analytic tool should be defined. The odds ratic, dencted OR, defined as the ratio of odds
for a specific level to the odds for the referent level. In a multinomial outcome setting, the odds ratio
of outcome Y = I versus outecome Y = L for a specific covariate x = r versus x = s 18 defined by:

o, 1. Py =t =) (Y Lx=1)

PRI E(YLpoy | (1)

In a multinomial logit model, the response variable Y having L distinet nominal levels, (L-1)
logits are generated and consequently, (Li-1) parameter estimates and corresponding odds ratios are
found for each of the covariates. In case of any significant differences among the parameter
estimates or the corresponding odds ratios under different logits are found, the adequacy of the
multinomial logit model over binary moedel will be established.

RESULTS AND DISCUSSION

In order to display the findings of current study, suppose there are . =3 levels in the response
variable and the third level having the highest frequency is considered as referent level. SPSS
multinomial logit output for nominal response is exhibited in Table 1 which contains the estimated
regression coefficients, estimated approximate standard errors, the Wald test statistics with
associated p-values, the estimated odds ratios, 95% confidence intervals for the odds ratios for the
two estimated logits or linear predictors. The results of multinomial logit model can be expressed in
the form of odds ratios, telling us how much change there is in the probability of being certain level
under study, given a unit change in any other given covariate but holding all others covariates in
the analysis constant. More simply, the results tell us how much a hypothesized cause has affected
this response, taking the role of all other hypothesized causes into account. A preliminary indication
of the importance of the explanatory variables in the model under different logits can be assessed
through the Wald statistic. The Wald test is obtained by comparing the maximum likelihood
estimates of the slope parameters ¥, , to the estimates of their corresponding standard errors SE(¥.,) .
The estimates of the standard errors of the estimated parameters can be obtained from Eq. 9. The
resulting ratios:
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Table 1: Estimated coefficients, estimated standard errors, Wald chi-square statistics with degrees of freedom and p-values, odds ratios

and 95% confidence interval of odds ratios for the multinomial logit model to the BDHS-2007 data

95% CI for OR;

Logit Explanatory variables ¥ SE(7,) Wi, df Sig. OR, LB UB
1(1/43)  Intercept -3.087 0.190 265.2 1 0 - - -
¥X; = Rural 0.344 0.190 3.3 1 0.071 1.41 0.97 2.05
X, = Urban - - - - - 1.00 - -
Xy = Poorest 0.997 0.276 13.0 1 .000 2.71 1.58 4.66
Xy = Poorer 0.995 0.260 14.7 1 .000 2.70 1.63 4.49
X, = Middle 0.485 0.274 3.2 1 0786 1.62 0.95 279
X, =Richer 0.423 0.263 2.6 1 108 1.53 091 256
X, =Richest - - - - - 1.00 - -
X5 = Professional -0.363 0.172 4.5 1 0.034 0.7 0.5 0.98
X; = House wife - - - - - 1.00 - -
X, = Having sex preference 1.740 0.184 80.2 1 .000 5.7 3.9 817
X, = No sex preference - - - - - 1.00 - -
2(2/3) Intercept -2.377 0.139 290.9 1 .000 - - -
¥X; = Rural 0.305 0.144 4.5 1 0.035 1.36 1.02 1.8
X, = Urban - - - - - 1.00 - -
Xy = Poorest 0.88 0.214 16.8 1 .000 2.41 1.583 3.67
Xy = Poorer 0.882 0.200 19.5 1 .000 2.42 1.634 3.58
X, = Middle 0.674 0.199 11.4 1 .001 1.96 1.328 2.89
X, =Richer 0.391 0.198 3.9 1 0.048 1.48 1.003 218
X; = Richest - - - - - 1.00 - -
X5 = Professional -0.508 0.136 14.1 1 .000 0.6 0.461 0.78
X; = House wife - - - - - - - -
X, = Having sex preference 1.879 0.147 163.9 1 .000 6.55 491 8.73
X, = No sex preference - - - - - 1.00 - -

under the null hypotheses H; :y,, = 0, will follow a standard normal distribution and hence
equivalently:

a2
Vi

Wy = —
[SE(%,)]

will follow chi-square distribution with single degree of freedom. Examination of the Wald statistics
in Table 1 suggests that each of the explanatory variables may contribute to the model. From the
statistical peint of view, the findings exhibited in Table 1, all the explanatory variables irrespective
of their levels under different logits are significantly associated with the response variables at 10%
level of significance,

For polychotomous explanatory variable we can expand the number of odds ratios to include
comparisons of each level of the variable to a reference level for each possible logit function. Thus
the four estimated coefficients for the design variable wealth index (X,) which estimate the log odds
for poorest, poorer, middle and richer versus the reference value of richest, suggest that two
categories poorest and poorer are similar, middle and richer are also similar since neither Wald
statistics are significant. The sign and magnitude of the estimated coefficients for the accumulated

design variables poorest with poorer and middle with richer suggest that the log odds of poorest,
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with poorer and middle with richer differ significantly from richest and are of similar magnitude
within each of the two logit functions (test are not presented). The hikelihood ratio test after
accumulation of peorest with poorer and middle with richer yields the value G = 2.22 with four
degrees-of-freedom with p = 0.70 indicates the accumulation of insignificant levels is worthwhile
for polychotomous explanatory variables.

Hauck and Donner (1977) examined the performance of the Wald test and found that it
behaved in an aberrant manner, often failing to reject the null hypothesis when the coefficient was
significant. They recommended that the more robust likelihood ratio test should be used to justify
the significance of individual predictor. Jennings (1986) has also looked at the adequacy of
inferences in logistic regression based on Wald statistics. In order to avoid the uncertainty of
inferences, he suggested that both the likelihood ratio test G and the Wald test W, require to test
the significance of the maximum likelihood estimates for 7., . The likelihood ratio test G is nothing
but the change in the deviance of a model with single covariate and a full model where minus twice
the log likelihood 1s known as deviance and denoted by D (Agresti, 2002). Under the same null
hypotheses, likelihood ratio tests G follow chi-square distribution with (L-1)x{M-1) degrees of
freedom. Here L and M are the number of levels of response variable and the corresponding
explanatory variable, respectively. The output of the likelihood ratio tests are shown in Table 2 and
it can be concluded that all the explanatory variables included in the model are significantly
associated with the response variable at 5% level of significance.

In order to fit a model, it 1s important to have tools to test for lack of fit, especially important for
the multinomial logit model, whose fit is notoriously difficult te visualize. Such tools are remarkably
scarce in multinomial logistic regression applications (Goeman and le Cessie, 2006). In such a
situation, Deviance and Pearson’s chi-square goodness-of-fit test can be employed whether the
model adequately fits the data. In these tests, lack of fit is indicated by the significance value less
than 0.05. To support the adequacy of the fitted model, a significance value greater than 0.051s
needed. If no warning message 1s given from the program or the number of subpopulations with
zero frequencies 1s small with p>0.05, it may be concluded that the model fits the data well. In the
current study, Deviance chi-square value is 60.00 having 64 degrees of freedom with significance
value 0.62 and Pearson’s chi-square value 1s 56.71 having 64 degrees of freedom with significance
value 0.73. The large p-values for both the goodness-of-fit tests signify the adequacy of the fitted
multinomial logit maodel.

The main objective of this study was to test the equality of the two odds ratios, H, :OR,, = OR,,
(v =1,2,3,4) under two different logits which 1s equivalent to a test that the log-odds for Y = 2
versus Y = 1 is equal to zero, simply H,, v, = v... The simplest way to obtain the point and interval
estimate is from difference between the two estimated slope coefficients in the multinomial logit
model. Using the output of the asymptotic variance-covariance matrix produced by the multinomial
logit. model, it can easily be obtained the estimator of the variance of the difference between the two
estimated coefficients and the endpoints of a 95% confidence interval for this difference and
summarized in Table 3.

Unfortunately, the findings with high p-values suggest that there is no significant difference
between the logits over the entire set of explanatory variables. Equivalently, the confidence
intervals exhibited in Table 8 for all the explanatory variables include zero and hence cannot
concluded that the log odds for Y = 2 is different from the log odds for ¥ = 1. In practice, if there 1s

no difference in the separate odds ratios over all model covariates then one should consider pooling
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Tahble 2: Likelihood ratio test for the significance of overall and individual importance of explanatory variables in the model

Model with explanatory variables D = -2Log likelihood G df Sig.
Null model 594,432 209.861 14 <0.001
X 301.241 6.669 2 =0.050
p 333.400 38.828 8 <0.001
Xs 311.386 16.814 2 =0.001
X, 490.982 196.410 2 <0.001
Full model 204,572 - - -

Table 3: Estimated coefficients under different logits, their differences, significant or p-values, 95% confidence interval for the difference

in multinomial logit model

Variables Coeff. of Logit 1 Coeff. of Logit 2 Difference Sig. 95% CI for the difference
X¥; =Rural 0.344 0.305 0.039 0.86 (-0.386, 0.464)
Xg = Poorest 0.997 0.88 0.117 0.71 (-0.497, 0.730)
X, = Poorer 0.995 0.882 0.113 0.71 (-0.475, 0.701)
Xe = Middle 0.485 0.674 -0.191 0.54 (-0.799, 0.417)
X, =Richer 0.423 0.391 0.032 0.92 (-0.562, 0.626)
X; = Professional -0.363 -0.508 0.145 0.47 (-0.247, 0.537)
¥, = Having sex preference 1.74 1.879 -0.139 0.46 (-0.511, 0.233)

multi response levels into a binary ‘ever’ versus never’ responses and more complicated multinomial
model is no better than the simpler dichotomous logit medel.

CONCLUSION

Logistic regression is a form of regression analysis that 1s specifically tailored to the situation
in which the response variable is dichotomous or polychotomous. Eesponse variable having more
than two levels is a situation frequently faced in the categorical data analysis. If the levels of the
response variable are nominal scale, nominal multinomial logistic regression is appropriate,
Multinomial logistic regression is inereasingly common, involving analyses in which the possible
causal effects of explanatory variables on a categoric response variable having more than two
response categories are assessed via comparison of a series of dichotomous responses. The
multinomial logit model is a generalization of dichotomous logit model but complicated in terms of
fitting process and interpretation. In case of significant difference is found in the separate odds
ratios produced by the different logits over the entire set of explanatory variables, it may be
concluded that multinomial logit model adequately fit the data with response variable having more
than two levels, otherwise response levels should be pooled into binary levels for ease of
computation, mathematical tractability and ease of interpretability. In the current study, there 1s
no significant difference between the parameter estimates under different logits and it may be
finally concluded that dichctomous logit model is preferred choice than complicated multinomial
logit model.
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