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ABSTRACT

The set of eigenvalue for the p (x)-laplacian Dirichlet problem is a nonempty set. Unfortunately
in general case, the principle eigenvalue A, of this set is equal to zero, whereas for p (x)=constant,
the fact A,>01s very important in the study of p-laplacian problems. In this study, we suppose some
sufficient conditions to use of nonzerc principle eigenvalue in variable exponent case to find the
solutions for p (x)-boundary value problem:

A B (x)+Au (x)FPu(x)=g(x,1);in Q
u=0,0néQ

on a bounded subset of R¥. which can be regarded as a starting point for investigating of models
like those described in p-laplacian in which the principle eigenvalue is involved.

Key words: p(.) laplacian, variable exponent sobolev space, eigenvalue, critical point, weak
solution

INTRODUCTION

Many problems in physics and mechanics can be modeled with sufficient accuracy using
classical Lebesgue and Sobolev spaces L* (Q) and W'F (Q)), where p is fixed constant and Q is a
appropriate domain. But for the electrorheological fluids (smart fluids) this is not adequate but
rather, the exponent should be able to vary. This leads us to study of variable exponent
Lebesgue and Sobolev spaces, LPY (Q) and WYY (Q), where is real-valued function.

An interesting mathematical model for electrorheoclogical fluids is developed by Rajagopal and
Ruzika. The model takes into account. the delicate interaction between the electromagnetic field and
the moving fluid. Particularly in the context of continuum mechanics, these fluids are seen as
non-Newtonian fluid. This study can be regarded as an investigation of Mihailescu and Radulescu
(2006).

Variational problems with the nonstandard growth condition has been studied extensively
during the past decades and many interesting results have been obtained; for example see
Agarwal et al. (2011), Alves and Soute (2005), Fan (2005), Fan et al. (2005), Ghaemi and
Saledinezhad (2011), Mihailescu and Radulescu {(2006) and Samko (2005).

In present study, we consider for the problem (P):
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By Rrwn @+ AT u=g i
u=0; ondd

which is similar to the constant exponent case. However, the wvariable exponent cases
posses more complicated nonlinearities and this makes the problem difficult in this case.
Finally, we derive existence result by applying the mountain pass method to

preblem (P).

PRELIMINARY
For basic definitions about variable exponent Lebesgue and Sobolev space we refer to
Diening et al (2004), Hudzik (1977) and Ruzicka (2000). Here, we mention some of main them.
Let Q be a bounded domain in RY with smoeoth boundary 3Q, pe(Q) and

1<p:=essinf_,p (x)<p" =ess sup, P (x)<eo (1)
The variable exponent Lebesgue space LFY(Q) is defined by:

e (Q):{u;u;Q —Ris masurable,jmhl(x) P dx < oo}

which is a Banach space with the norm:

n(x)

=inf {o>0; _ ‘5 dx <1}
a

u
18]
L

The variable exponent Sobolev space W'Y (Q) is defined by:
WO ()= e 150 Q) | Ve O]
with the norm:
+|Vu|

lu lepc)(m =|u ‘Lpom) 19,

Define W,'*" (Q) as the closure of C,” in W' (Q) and

Np(x) . :
p 0=y N-p(x)’ pL N
o, px)=N

Then we have:
Proposition 1: (Fan and Zhao, 1998):
(1) W' (Q) and WPV (Q) are separable, reflexive Banach spaces

(2) If qeC(Q) and 1zq (x)<p” (x) for all x€Q then there is a compact and continucus embedding
from WEPY (Q) to LAY (Q); it is shown with:
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WO () oo 1,30 (Q)
(8) Thereis a constant C>0, such that;

<CVul,, vue W™ Q)

| u | LPOEOJ >

18]
L

By (3) of proposition 1 we know that [Vul,, and lulyuo = are equivalent norms on Wy (Q).
We use |Vulyo  to replace [lvl=10lyu0  in the following discussion.

Proposition 2: (Zhao and Fan, 1998): If f:OQxR-R is a Caratheodory function and satisfies:

(%)
[fix,g)|ca(x)+b|s \p’(x);Vx cQ,seR

Where, p,, p,€C(Q) and p, (x), p, (x)>1 for all xe & .

Moreover, a € L*“ (Q), a (x)>0 and b>01is constant, then the Nemytsky operator from *”(Q) to I*V (@)
defined by (IN; (1)) (x) =f (x, u (x)) is a continuous and bounded operator.
Proposition 3: (Fan and Zhao, 2001): If we define p: LF® (Q)-R by:

POO= [ [uG0 P dxvu € 117 ()

Then;

minflufy, lufy d<plw)<max{jufy, .jufl, }
(] [{=)) [{>)] [{=)]

Consider the eigenvalue problem:

®) A u (=2 (x) P u(x), inQ
! u=0 ondQl

Definition 1: Let AcR and ueW,"*", (u, A) is called a pair of solution of problem (P,) if:

| Fu P vuvvd=a | uvdx Ve Wi (Q)

If (u, &y is a solution of (P;) and u=0, we call A and u eigenvalue and eigenfunction
corresponding to A of (P)), respectively.
It 1s easy to see that, if (u, A) is a solution of (P,) and u=0, then:

|| 7u P dx
Q

A=h{u)="%—
.[Q|u|p(x)dx

and hence, A>0. Define:
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— In' Vup®dx 150 (D
Ay =Ry =inf m, O=ue W™ ()
Q

Theorem 1: (Fan et al., 2005): Let N>1. If there is a vector leR™. {0} such that for any xeQ,
f it) = p (x+t]) is monotone for tel := {t [ x+t1eQ}, then A,>0. If N = 1 then A.>0 if and only if p (x) is
monotone.

Definition 2: Let FeC (X, R) where X 1s Banach space. For ceR the functional F' satisfies the
Palais-Smale condition on the level ¢ (shortly (PS)) if any sequence {x |, _ ;,cX such that:

F (x )~e, VF (x)-0
has convergent subsequence (in the norm of X).

Theorem 2: (Drabek and Milota, 2007) (Mountain Pass Theorem): Let X he a
Banach space and let FeC (X R), eeX and r>C be such that |e|>r and

infy o on I CO>F O):F (e)
If F satisfies the (PS), condition then e is eritical value of F.

EXISTENCE OF SOLUTIONS

Theorem 3: Let p: Q-R be continuocus function which satisfy (1) and assumptions of Theorem 1.
g: QxR 1s a caratheodory function and satisfies:

lg (x, 7) | <dy+dy 1y | VxeQ, yeR (3)

where, p'<a<p” (x) and d,, d, are positive constants. Moreover:

- g(x,+yj =0 uniformly forallx € Q2 (4)
l¥lp
and there exist 9>p" such that:
1
2 (X=yl)sg g2(x,y,) VY <V, ()

Then problem (p) has a weak solution provided that A>-A. where, A.1s introduced in (2).

Proof: Let us define F:W;* () >R by:
1 s A
Fu) :L@Wu\ @ dx+j0@|u| © dx - [ G(xu(x))dx (6)
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Where;
Gxs) = [ g(x,y)dy

Hence, FeC({X, R) and its critical points correspond to the weak solutions of (p) (Chang, 1986).
Indeed:

(VE, y):jm\ Vu P Vuvvdx +jﬂ\ v P gvdx g (x, 0 (x)) v(x)dx; YveX

Note that: 2,>0 (Theorem 1) and so there exist ¢,>0 such that for every ueX we obtain:

o [ [uf™dxs | [Vup® dx (7

for A>-A. the expression:

_ n(xX) 18]
Ir_[nwu\ dx+A_[n|u| dx

Satisfies:
L, (w)=cp(Vuy, for any ueX (8)

where, ¢, = ¢, (1) = 1+min {0, A/A.}, is constants independent. of u. Hence, by applying proposition
3 we obtain:

i lulz1=1 (Wzecul*~

t))
i [ul=z1=1, )=cful®
Now from (3) and (4) we have for every e>0:
G(x, s)zels|[™+C () |s|®
Since p'<p” (x), we have XoLF (Q) and so there exist £»0 such that:

il <& llu s ¥ue X

Now let. e>0 be small enough such that.

Bt 72
& < o

Henee, for |ul|<1 we have:
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F(H)E%Il(u)fsj |u|p+dxfC(S)I [u|*dx
p 0 0

1

P

z—cflu" —eg” - Ce) || u|”

C + oL
=—lu|f* -C(e)||lull
Ip

Therefore, there exist r>0 (small enough) such that b =inf, Fu)=0=F (0).

Now let ueX™ {0} and |u|<1 then for k>1:

ful =1

Faay < 1, (- [ G e xu(x)dx
p a

By assumption () For some good constants C, M>0 we have:

G(X,s):rg(x,y)dy zr EG(x, vidy ZCJ.Sg dy=Cls| |s|=M
1) 1) y 1) y
Recall (7) then we obtain:

1, (w) <[11Jp<wo
[o]

0

Hence:

B+ 7\‘ s
F(Ku)gK—[l—J|u|p' —~ce® | uldx
p e P

0

which implies for large k we have F' (k u)<0.

Set e = xu then we obtain |e|>r and F (e)<0. It remains to verify that F satisfies the (ps).
condition. Actually we will verify that F satisfies even a stronger version of (ps), condition. Namely
we prove that any sequence {u },” satisfying d: = sup, F (u )<~ and F {u )-0 contain a convergent
subsequence.

By using (5), we obtain:

1
IQ(G(x,un (x))dx ggfn g(xu, (x)dx
and hence, for |u,|>1.
1 : 1 1
d=Fu)= L) ) Gtu,)de> ST, ()~ [ g0, dx
1

1 1 1 1 1
=<| ——— |, (u)+—(Fu)u)=| ———|¢]u, |[p —=|F'u u
[p+ 3}1(9 SF)u) [If 3} =1 F ) i, |
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We knowp" <$ and so |u,| is bounded. Now, passing to a subsequence if necessary, we can
assume that u_-~u in W' (Q). By the compact embedding W, "*“{Q}>-L *(Q), we have u,_~u in
LP (Q).

On the other hand:

(F'(u,)-F'(u),u, —u)=I, (u, —u)—jﬂg(x,un)(un —wdx

It is elear that (F (u )-F’ (u), u -u)-0 as n-e. The uniform converges of {u_},” and {g(., u, ()}~
implies that also:

[ Eeou)-gxu ), —uydc>0  asn—e

Therefore:
I, (u,-u)-0 as n-ee

and by use of (9), u ~u in W "V (Q).
It follows from theorem 2 that there exist a eritical point ueX of F' and hence a weak solution

of ().

Corollary 1: Suppose the conditions in theorem 3 are hold, moreover g (x, s) = 0 when s<0, then
problem (p) has a non negative weak solution.

Proof: It follows from Theorem 3 that there exist weak solution u eof W % (Q) and so:

[V [ vedxo+ Ju, 7 g [ g G u, ) viods, W le W @)

Taking v,~ = max {o, u,}, we get:

p=)

dv; :
ol deraf v 7 ax=o0

(Ao

Hence, I, (v,7) =0 and |v,”| =0, i.e., v,720 for all xefd.
Remark 1: Theorem 3 is valid, if we replace the number ¢ with the ¢ (x)eC (Q) where ¢ (x)>p (%),

Theorem 4: (Drabek and Milota, 2007): Suppose u,eC' (Q) be local extermum of F, where
Fu=f(x, u, Vu(x) dxand f=1 (x, r, s) is a function defined on OxR? with continuous second
partial derivatives respect to all its variable and let x,e€) be such that.:

2

f
g (3,0 (%), Vi, (x )= 0

Then there exist 6>0 such that u,eC? (x,-8, x,+9).
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Corollary 2: Suppose the conditions in theorem 3 are hold, moreover

og g

ox’ 8

are continuous functions. If the problem (p) has the non constant weak sclution u,e W,** () then
there exists x,Q and 8>0 such that u,eC? (x,-6, x,+8).

Proof: Apply theorem 4 with:

Firs) = —L[sF® 42 1P Gk,

p(x) pix)
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