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ABSTRACT

Mesh free methods are applied in many new researches in the areas of approximation theory
and numerical analysis as an alternative to the mesh based methods such as finite element and
fimte difference. The recent new developed mesh free methods have the advantage of not requiring
a mesh of elements while providing comparable results to the other numerical methods. In this
study, a mesh free scheme based on the radial point interpolation methed was used to solve the one
dimensional neutron diffusion equation. The applied method uses the Galerkin wealk form of the
differential equations. Radial basis functions which are powerful functions in the field of function
approximation, were used to construct the shape functions. Gauss quadrature scheme was applied
in order to calculate the integrations of the weak form of the equations. The efficiency and accuracy
of the method was evaluated through a number of examples. The Reed test problem was also solved
through the applied method to demonstrate the capabilities of the developed program. The applied
Mesh free method results were in good agreement with the analytical sclutions. Comparing with
the results of the finite element, one concludes the applied mesh free method improves the
computational accuracy but at a cost of requiring more computational time.

Key words: Neutron diffusion equation, radial point interpolation method, mesh free method,
radial basis functions, Galerkin weak form

INTRODUCTION

Recently, there has been great interest in the development of computational methods able to
avold mesh dependency, provided the results to be comparable with the currently established
methods. Common appreximation methods such as finite elements require underlying mesh to
define basis functions. This 1s usually a difficult process to implement in space dimensions. A group
of techniques which are called mesh free methods, have been developed in the last decades and
successfully applied in a wide variety of computational fields (Leitac ef al., 2007). In mesh free
methods a set of scattered nodes are applied to represent the problem domain and its boundaries.
These sets of nodes which are called field nodes, do not form a mesh of elements. On the other
hand, for the interpeolation or approximation of unknown functions no priori information on the
relationship between the nodes 1s required (Liu and Gu, 2005).

Mesh free methods have a number of interesting properties. They allow an accurate
representation of complex problem doemain and there is no pre-defined connectivity between the
nodes (Avila and Perez, 2008; Ding et al., 2004). Ancther exciting property of mesh free methods
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is their potential in adaptive techniques where a user in an interactive mode could simply add a
number of nodes into the portion of problem domain where more accuracy is required. Then, the
method with a simple implementation process enhances the results without need to construct a new
mesh of elements (Belytschko ef al., 1994).

Several mesh free methods have been developed up to now, among them the Smoothed Particle
Hydrodynamies (Liu and Liu, 2003), the Element Free Galerkin Method (Belytschko et al., 1994),
Point Interpolation Method (Iau and Gu, 2001), the hp-clouds method (Duarte and Oden, 1998),
the Reproducing Kernel Particle Method (Liu et al., 1995), Generalized Finite Element Method
{(Babuska et al., 2004) and the Partition of Unity Method (Babuska and Melenk, 1997) are the
better known methods.

Mesh free methods are classified based on the form of the governing equations (strong, weak
or a combination of both week and strong) and alse on the applied function
approximationfinterpolation scheme. Mesh free methods which are based on a strong form of
equations do not require an integration process. These techniques are truly mesh free methods
(Liu, 2003).

Mesh free methods based on the weak form of equations need the integration process. These
methods require background cells to perform integration. In this case, contrary to the Finite
Element Method (FEM), there is no relation between nodes and background cells. Currently, the
mesh free weak form 1s the most widely used due to its excellent stability (Lau ef al., 2008).
Regarding classification based on the applied function approximationfinterpolation scheme, the
Moving Least Square (MLS) approximation and Point Interpolation Method (PIM) are the most
widely used methods (Liu ef al., 2004). The Element Free Galerkin (EFG) and Mesh Less
Petrov-Gralerkin (MLPG) methods have been developed based on MLS approximation. Contrary to
the MLS approximation, PIM uses interpolation to construct shape functions that possess the
Kronecker delta function property which i1s useful for implementing the houndary conditions.
{Cul et al., 2010),

Although, the mesh free methods have been applied successfully in vast variety of areas, most
are still under development. According to the authors’ search results, to date, the mesh free methods
have not been applied in the field of reactor physics calculations. In this study, a mesh free method
based on the Radial Point Interpolation Method (RPIM) is implemented to solve the neutron
diffusion equation in one dimension. The Galerkin method was applied to discretise the neutron
diffusion equation and the Gauss-Legendre scheme is used to carry out the integrations of
the weak form of the equations. A computer code was developed in Matlab environment for
implementation of the method and several one dimensional test problems were sclved
through this computer code. The results were compared with the FEM results and the

analytical solutions.

MESH FREE RADIAL POINT INTERPOLATION METHOD
Since the mesh free methods do not use mesh of elements, the field variable ¢(x) at a point of
interest x is interpolated in the problem domain using the function values at neighbor nodes

{(which are called local support demain) of the point x:
000 = X1 N, (99, =N"(x)o, 1
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where, n is the number of neighbor nodes considered in the local support domain of the point x, ¢,
is the nodal field variable at. field node 1 and N(x) is the shape function corresponding to field node
1. A local support domain of a point x determines the number of noedes(n) to be used to approximate
the function value at x.

Similar to FEM, the discrete equations of a Mesh free method can be formulated using the
shape functions and the strong or weak form of the problem equations.

Radial basis functions: Over the last decades, Radial Basis Funections (REFs) have gained
popularity and found to be widely successful in the field of scatter data interpolation (Sarra, 2006),
More recently, methods based on the RBFs have been applied for the numerical solution of partial
differential equations (KKansa, 1990). RBFs were also successfully applied to neural networks
(Ozyilmaz et al., 2002; Farivar ef al., 2009; Qasem and Shamsuddin, 2010),

In radial basis functions, the variable 1s only the distance between the point of interest x and
a node at xi (r = |x-x;]). There are a variety of RBF types and their characteristics have been widely
investigated (Buhmann, 2003). Radial basis functions may or may not contain free parameters
called the shape parameters. The most widely used RBFs are listed in Table 1 (ILiu and Gu, 2005).

The mentioned EBFs in the above table which are called classic RBFs, have global support. In
addition, so-called compactly supported radial basis functions such as the Wendland functions
{Wendland, 1995) have also been developed. Some study on mechanics problems failed to find clear
advantages of compactly supported RBF's over classic RBFs (Liu and Gu, 2005},

Radial point interpolation shape function: One of the main differences of the Mesh free
methods and FEM is at the stage of shape function construction. Interpolation of function ¢(x)
through the radial basis functions can be written as:

o' = 3" Ri0a, + 3 PeOb, =RT(Da+PT(x)b (2)

where, R, (1) is a RBF, n 1s the number of RBFs, P.(x) 1s a monomial in the space coordinate and
m is the number of polynomial basis functions, a, and b, are the coefficient to be determined.

The polynomial term in Eq. 2 1s not always necessary. A number of advantages such as
improvement in accuracy and stability of interpolations have been found for adding the polynomial
terms (Liu and Gu, 2005). Due to these advantages, in this study EBFs augmented with linear
order polynomial term have been used to construct the shape functions.

In order to obtain the shape functions, Coefficients a and b in Eq. 2 should be determined. For
this purpose a support domain including a number of field nodes 1s formed for the point of interest
x. Coefficients a; and b, in Fq. 2 can be determined by enforcing Fq. 2 to be satisfied at the n nodes
surrcunding the point of interest x (local support domain). This leads to n linear equations, one for
each node. The matrix form of Kq. 2 can be expressed as:

Table 1: The most widely used radial basis functions

Name Expression Shape parameters
Multi-quadries (MQ) R (1) = @ + (x..d.)%)? o..q

i r
Gaussian (EXP) R (r)=exp (—(0t,.( 1)) )
Thin plate spline (TPS) R@=r d, k
Logarithmic R (r) = r™ logr

d,: Average distance of failed nodes in the local suppart domin
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d)s = 1:")‘Oa + Pmb

where, ¢_is the function values at the nodes.

The moment matrix of RBFs and the polynomial moment matrix can be expressed as:

Ri(n) Ry(m) .. R,(x)
R, = Rim) R,m) .. R,(x)
Rl(rn) Rl(rn) Rn(rn) nxn
1 % y.. B(x)
P - 1 x, ¥,... P(x;)

1 x, ¥,.. B.(x) e

In Eq. 4, r;in R, (rp is: [x-x;].

(3)

(4)

(5)

However, there are n + m unknowns in Eq. 3 (a,,...,a, and by,...,.b_). The additional m equations

can be added using the following m constraint conditions (Liu ef al., 2007):
Y, Pix)a =Pla=0;k=1.,m

Combining Kq. 3 and 6 yields the following set of equations in the matrix form:

ik
q)s = = T =Gd
o| [T o|b
=G0,
From Eq. 2 and 7 we can obtain:
¢"(x)=R"(x)a+ P x)b=[RTx) P'(x)|d=[R7(x) PT(x)]G"¢, =N"(x)q,
Where:

NGO =[RT(x) PTG0]G =[N, GON,(O.N, (). N, (x)]

Considering that.:

Eq. 9 can be re-written as:

¢" () = [N, () N, (x)... N, ()] ¢, = Ny (x) b,
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According to Kq. 11, the shape functions corresponding to the field nodes are as follows:
N ) =[N, ()N, x)... N, (x)] (12)

These shape functions are found through Eq. 10 by omitting the extra elements of the obtained
vector. More details and discussion about the properties of the above shape functions which are
called RPIM shape functions can be found by Liu and Gu (2005).

In this research, different types of RBFs including MQ, EXP and TPS augmented with the

linear order polynomial term have been used to construct the shape functions.

WEAK FORM OF THE NEUTRON DIFFUSION EQUATION
The standard weak form of the neutron diffusion equation is derived by multiplying the
governing equation to the weight function v{x) and integration over the domain:

[veot L0460+ 2,000 560 =0 (13)
d dx = dx
Using the integration by part, Eq. 13 is reduced to the following form:
j(D d—d—q’+ vE,0)dx = jvS(x)dx+ veop 2| ep ), (14)
dx dx

v (x) should satisfy the essential boundary condition.

IMPLEMENTATION OF THE METHOD

In order to 1implement the described method, the Galerkin method is used to discretise the weak
form of the diffusion equation. For this purpose v (x), ¢ (x) and 99 in Eq. 14 are replaced by the
following expressions: dx

vxX)=N,x)yi=1,.n (15)
¢ = X7 N, ()0, (16)
—¢ =3 dx N, 00, = 3 B,(x)0, an

where, n is the number of nodes in the local support demain, N(x) is the RPIM shape function
(Eq. 10, 12) and ¢, is the field variable value (neutron flux) at point j.

The integration in the left hand side of Kq. 14, considering the above replacements, can be
written as:

I(D$d¢+v2¢)dx I(D Eﬂ; +N1232N¢)dx

(18)
I(DB EBcp +N1232N ¢, ydx = E(I(DBB + N2, N )9, = EKU(]) i=1..n

=l oo
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where, n is the number of field nodes in the local support domain and:

K, = [(DBB, + NI, N )dx
=]

i=a ']

1s called the nodal stiffness matrix.

The integration in the right hand side of Kq. 14, similar to that shown above can be written as:
v () dx=[ N, (x). S(x)dx=1f;I=1,..n (19

where f 1s the nodal body foree vector.

The last two terms in Eq. 14 are specified by the boundary conditions defined in the problem.
As the RPIM shape functions possess the Kronecker delta function property, the boundary
conditions can be imposed directly and accurately without any additional treatment compared with
FEM (Liu, 2003).

In order to calculate the stiffness and body force integrations, the problem domain is discretised
into a set of background cells and the global integrations can be expressed as a summation of

integrals over these cells:

I@GdQ:i [ cda (20)

where, n_ is the number of background cells, GG represents the integrand and Q, is the domain of
the kth background cell.

Contrary to FEM, there is no relation between the background cells and the field nodes. This
property simplifies the node insertion process in mesh free methods compare to that in FEM.

Several methods to perform the numerical integrations in the Mesh free methods have been
suggested up to now (Liu ef «l., 2007; Dolbow and Belytschlko, 1999). However, in this research the
Gauss quadrature scheme which is commonly used in the FEM and possess good properties
regarding the accuracy and stability, was employed to perform the numerical integrations over the
cells. When n_ Gauss points are used in each background cell, the integration for each background
cell in one dimension is:

¢ L,-L L,-L,_ L +L, 91
deQ_LGdQ_ . ;WIG( g H ) (21)

where, w;is the Gauss weighting factor for the i, Gauss point at x;.

NUMERICAL RESULTS AND DISCUSSION

In order to demonstrate the ability of applied mesh free method to deal with neutron diffusion
equation and consequently to demonstrate the method upon which it 1s based, a number of test
cases 1n one dimension was solved. The existence of analytical sclutions was the main criteria in

selection of the problems. A computer code was developed 1n Matlab software to implement the
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method. The mesh free results were compared with the FEM and analytical solutions. In the
implementation of the mesh free method three different RBF (MQ, EXP and TPS as introduced in
Table 1) were used. Furthermore, two different sizes of local support domain were considered to
construct shape funections. In the first situation which is called “2n MFM”, 2 nodes were regarded
in the local support domain and in the second situation which 1s called “4n MFM’, 4 nodes
considered in the local support domains. In order to keep the similarty of the solutions to compare
the results with the FEM, linear (2 nodes in each element; which is called 2nFEM) and cubic
{4 nodes in each element; which is called 4nFEM) shape functions are used for the FEM treatment
of problems. In addition FEM based on the Galerkin weak form of the equations is used. The
following definition of the error was applied in the calculations:

q)melhnd _ pamlylic
i

e 11 2 (22)

Case one: Consider a 2 region finite slab of non-multiplying with 5 em length of each region and
a constant plane source (S = 1) at the left side (at x = 0), subject to the following boundary
conditions:

o Left B.C.: ;- p%_g/y at x = 0" (J = neutron current)
dx

« Right BC..¢p=0atx=10cm

And considering the continuity of the neutron flux and current at the interface (x =5) and the
following constants and node numbers:

Case I:

¢ Region 1. Zae=05em ™}, D=033cm, ne=8
* Region 2: Ze=0.1cem™, D =0.56 cm, ne =6

Case II:

* Region1: Z¢=10em™, D=0.22cm, ne=11
* Region 2: Za =0.1em™, D =0.56 cm, ne =11

Case III:

* Region 1: Za¢ =0.0lem™}, D =0.65cm, ne=9
¢ Region 2. Ze=10ecm ™}, D=022cm, ne=9

Figure la shows the obtained results from the Mesh free method, FEM and the analyvtical
solution for caseb-1-II1. Table 2 shows the error of the Mesh free and FEM methods defined by
Eq. 22.

Case two: Consider a 2 region finite slab of non-multiplying with 5 ¢cm length of each region and
a distributed source (S = 1) on the entire length of region 1 of slab, subject to the following
boundary conditions:
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4.54 @ — Analytic 0.77 (b)
4.04 ——2n FEM-MFM
—~ 4n FEM 0.6
3.54 -~ 4n MFM-EXP
3.0 0.5
o 2.54
5 EE
= 2.04
3 1.54 % 0.3
1.0 0.2
0.5
0.0- 0.1
-0.5 T T T T T T T T T 1 04
o 1 2 3 4 5 6 7 & 9 10 o 1 2 3 4 5 6 7 8 9 10
Slab length (cm) Slab length (cm)

Fig. 1: Calculated flux for cases (a) case one-III and (b) case two-III

Table 2: Calculated error for the cases one and two

Method 2nFEM 2nMFM 4nFEM 4nMFM-Exp 4nMFM-MQ 4nMFM-TPS e
Case one

Case I 0.103 0.103 0.0239 0.0064 0.0145 0.0209 0.2678
Case II 0.0839 0.0839 0.0072 9.55E-04 0.0037 0.006 0.1326
Caselll 0.071 0.071 0.0151 0.0067 0.011 0.0138 0.4437
Case two

Case | 0.0059 0.0059 0.0032 0.003 0.0031 0.0031 0.5424
Case 11 0.0127 0.0127 0.0046 0.0038 0.0044 0.0043 0.8260
Caselll 0.0629 0.0629 0.0195 0.0111 0.0155 0.0181 0.5602

« Left B.C.: Perfect Reflector: (4¢ _ o at x=0)
dx
* Right B.C.: Bare condition or equally Extrapolated length B.C. (6 =2.13D)

And considering the continuity of the neutron flux and current at the interface (x =5 cm) and
the following constants and node numbers:

Case I:

¢ Region 1: Ze=05em™,D=0.33cm, ne =6
¢+ Region 2: Ze=0.1em ™, D =056 cm, ne =6

Case II:

¢ Region 1: Ze=10em ,D=0.22cm, ne =6
¢+ Region 2: Ze=0.1em ™, D =056 cm, ne =6

Case III:

* Regionl:Ze=15em,D=0.17cm,ne=9
¢ Region 2: Ze=10em ', D=022cm, ne=9
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Figure 1b shows the obtained results from the Mesh free method, FEM and the analytical
solution for case 5-2-II1. Table 2 shows the error of the Mesh free and FEM methods defined by
Eq. 22:

Calculated error for the Cases one and two: The only difference between 2nMFM' and
‘AnMFM’ methods is the size of local support domains or in other words the number of nodes in the
local support domains. In 2nMFM, 2 nodes were used in each local support domain while in
4nMFM, 4 nodes were applied. The abbreviations M@, EXP and TPSin Table 1 are the RBEF types.
The 4nMFM indicated results on Fig. 1 obtained using EXP-RBFs. Since the 2nMEFM
implementation through different RBF types show the same results in all cases, the RBF type
extension of the methods was omitted and only one column selected to indicated it. Both 2nMEM
and 2nFEM use 2 nodes to construct the shape function and as it is clear in Table 2, the cutcome
of both methods are very close to each other. This 1s due to the fact that in the 2 nodes simulation,
the linear polynomial which is augmented to the RBFs plays a deminant rcle in the
interpolations. As indicated in Table 2, increasing nodes in the local support domains which 1s easy
to implement process in mesh free methods, enhances the accuracy of the results. The 4nMFM
results through different types of RBFs in all cases show higher accuracy in comparison to 4nFEM
results. This is due to the power of EBFs in the interpolation field. Among the applied mesh free
methods with 4 nodes in the local support domain, the 4enMEFM-EXF results are more accurate than
the others. The parameter ‘e’ in Table 2 is defined as the ratic of the 4nMFM-EXP error to the
4nFEM error. Illustrated results in Fig. 1 and Table 2 show that the applied mesh free method
gives comparable results to 2nMFM and more accurate results are estimated using 4nMFM.
Inereasing the number of nodes to construct the shape function in mesh free methods 1s carried out
without causing complexity of procedure while this process in FEM is performed through modifying
the arder of pelynomial.

The effect of node numbers in the problem domain: The impact of applying different
node numbers in the problem domain on the accuracy of the results were studied through
examining a number of the above mentioned case studies. Fig. 2a and b show the solution errors
{defined according to Eq. 22) for the case studies case one-II and case two-III, respectively.

0.18 . . ‘ ‘ . . . 0.09 .
@ *® +  2nFEM (b) @
0.16} o 2nMEM 0.08F
0.14} © 4n FEM 0.07t
012 + 4nMFM-EXP 0061 ®
L «  ANMFM-MQ _
o o]
S 0.10} 4n MFM-TPS S o0.05f
] ¢ o
0.08} 0.04F
0.06} 0.03F
0.04} 0.02F
[}
0.02} @ g 0.01F
Y ey,
0 A 0
10 3 40 45 50 10
No. of nodes No. of nodes

Fig. 2(a-b); The effect of node numbers on the accuracy of results (a) case one-II and (b)
case two-I11
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40 + 2nFEM MFM 7
35l 4 4nFEM |
+ 4n MFM-EXP
3.0r 1
E 2.5+ 4 13(
§ 2.0+ 5
5 15/ 3
3 g
1.0+
0.5}
0.0
05 . ‘ . . . ‘ . . ‘ i
0 1 2 3 4 5 6 7 8 9 10 9 10

Slab length (cm) Slab length (cm)

Fig. 3(a-b): Caleulated flux for problem (a) case one-II and (b) case two-II1 with irregular nodes

Tahble 3: Calculated errors for a number of case studies with the irregular node distribution

Method 2nFEM 2nMFM 4nFEM 4nMFM-Exp AnMFM-Mg 4nMFM-TPS e
Case one III 0.1022 0.1022 0.0356 0.0079 0.0146 0.0322 0.2219
Case two III 0.0956 0.0956 0.0323 0.0111 0.0156 0.0294 0.3436

Using less node numbers in problem domain, one find mesh free results are more accurate than
FEM. By increasing the number of nodes in the problem domain, the FEM results approach to the
mesh free results.

Irregular field node distribution: In order to evaluate the robustness of the methed to the
irregularity of the field nodes distribution, some of the above problems were solved with a different.
distribution of field nodes. The robustness of the Mesh free method was evaluated as comparable
with the FEM results. The obtained results for case studies case one-III and case two-I11 with
irregular distribution of the field nodes are indicated in Fig. 3a and b, respectively and also in
Table 3. These case studies were also solved through the FEM method with the same irregularity
of nodes and the results are indicated in Fig. 3a and b accordingly and also in Table 2 for
comparison with the Mesh free results. In the regular case the nodes were regularly distributed
between 0 and 10 with the interval of 0.625 ¢m and in the irregular case the nodes were at.;
{004131.7213.03.7415053628677684879.210}L

Calculated errors for a number of case studies with the irregular node distribution: It
is clear from the results, in the irregular cases, the errors of 2nMFM and 2nFEM sclutions are the
same and the 4nMFM errors are less than 4nFEM. Comparing the error of methods and the
parameter ¢’ in Table £ and 3 indicate that whether the irregularity of nodes increases the errors
in a number of cases, the ratio of errors 1s decreased in most of the cases. This shows the excellent
behavior of the applied mesh free method at the irregularity of node distribution compared with the
applied FEM.

Node insertion: Node insertion is one of the exciting characteristics of Mesh free methods where
a user in an interactive mode could simply insert a large number of nedes into the portion of
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0.7

Analytic
06 q
£ MFML
051 q
#  MFM2

0.4 r

031

Neutron flux

0.2+ 2inserted nodes

0.1r

0.0 r

Slab length (cm)

Fig. 4: The effect of node insertion in the problem domain

Tahble 4: Specification of the 1D reed problem

Region No. Region width (cm) Za(cm™Y) s (ecm™Y) Source
1 0.0-2.0 50.0 0.0 50.0
2 2.0-3.0 5.0 0.0 0.0
3 3.0-5.0 le-5 0.0 0.0
4 5.0-6.0 01 0.9 1.0
5 6.0-8.0 0.1 0.9 0.0

problem domain where more accuracy is required and the method would precede to enhance the
results. Figure 4 shows the obtained results for case study 5-2 with the following constants:

* Region 1:Za=15ecm ™', D=1/6 cm
* Repgion 2:Ze=10cm }, D=1/4.5cm

For this case, adding only two more nodes to the problem domain besides interface of the regions
{at x = 4.5 and 5.5 cm), enhance the accuracy of the results as shown on Fig. 4 (the problem was
solved through 4nMFM-EXP implementation). The process of node insertion in Mesh free methods
is done simply be defining the position of new nodes and without any other change in the other
parts of solution.

The reed problem: This one group multi-region problem for an idealized reactor lattice cell that
is located at the edge of a bare core provides a severe test for transport theory codes. This problem
is usually considered to check the validity of transport codes but the diffusion solution of this
problem could be comparable to the P1 solution. It is a problem of four different material regions
with a reflecting boundary condition on the left and a vacuum houndary condition on the right.
This problem was solved to demonstrate the capabilities of the developed computer program. The
specification of the Reed problem including region width, material properties and source strength
of each region is given in Table 4 (Abuzaid, 1994). The number of nodes which were used in
different regions of the problem demain 1s indicated in Table 5.
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16
2n FEM-MFM

o 4nMFM-Exp
+  4nFEM

141

Neutron flux

0 1 3 4 5 6 7 8
Slab length (cm)

Fig. 5: The obtained results of the 1D Reed Problem
Table 5: The number of nodes applied to solve the 1D Reed Problem
Region No. Region width (cm) No. of nodes Region number Region width (cm) No. of nodes
1 0.0-1.9 4 2 2.9-3.0 10
1 1.9-2.0 10 3 3.0-5.0 4
2 2.0-21 10 4 5.0-6.0 20
2 2.1-29 8 5 6.0-8.0 10

Figure 5 shows the obtained results of sclution of the Reed Problem through the applied mesh
free and FEM methods. The results are in good agreement with the FP1 solution of this problem
obtained by Abuzaid (1994).

CONCLUSION

The applied Mesh free method gave the same results as FEM where 2 nodes were used in the
local support domains and led to more accurate results than FEM where 4 nodes were used in the
local support demains. The error of the applied Mesh free methods with £ nodes in local support
domains using different types of RBFs were the same but among the applied Mesh free methods
with 4 nodes in the support domains, the 4enMEFM-EXP results were more accurate than the others.
Adding more nodes in the problem domain (near to the interfaces and also everywhere which more
accuracy 1s required) enhances the accuracy of results. This 1s an easy to implement process in mesh
free methods compare to mesh based methods, especially in space dimensions. Robustness of the
applied method to irregular node distribution was examined and good performance was revealed
in this area. The main disadvantage of the Mesh free methods i1s that the shape function
construction is a more complicated and more time consuming process compared to FEM but it should
be considered that nowadays, increases in the processing speed of computers and also parallel
computation can compensate this drawback of the Mesh free methods.
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