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ABSTRACT

Thin shells are prone to fail by buckling due to compressive membrane stress. Although shells
develop primarily membrane stresses, in most practical situations, they have some bending stresses
as well as a result of supports, loading condition and discontinuity. In such case, the response of
a shell to external loads becomes nonlinear. Linearization of the nonlinear equilibrium equations
gives rise to an eigen value problem solving which buckling lead 1s obtained. Eigen value buckling
analysis is computationally faster than the nonlinear analysis involving tracing the load-deflection
path and finding the corresponding collapse load. However, the buckling load estimated using the
eigenvalue buckling analysis is approximate and usually overestimated. For the systems with large
prebuckling rotations this appreach may give highly unconservative results. Attempts have been
made for better prediction of actual buckling load of shells of revolutions by combining eigenvalue
buckling analysis and geometric nonlinear analysis. Such methods are computationally more
efficient than the nonlinear buckling analysis but more reliable than the linear buckling analysis.
This study presents an overview of the stability analysis of shells of revolution using a conical
frustum shell element incorporating the linear and simplified nonlinear buckling analysis including
the treatment of initial geometric imperfection.
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INTRODUCTION

Thin shells and plates are very common in structural constructions. In the design of thin shells
{or plates) buckling is an important factor to be considered. Buckling may be overall (global) or
local. Buckling of axisymmetrie shells, especially cylinders, received a good amount of attention in
the past (Timoshenko and Gere, 1963; Bushnell, 1985; Al-Qablan, 2010). A lot of theoretical
work to predict the buckling load of these structures is available in the literature. With finite
element. method, it is possible to analyze more complex shells and other structures (Wood and
Zienkiewicz, 1977, Boumechra and Kerdal, 2006; Bagchi ef al., 2007; El-Kafrawy and Bagchi,
2007). An insight on the local buckling of axisymmetrie shells has been provided by Cai ef al.
(2002), while Athiannan and Palaninathan {2004) presented an experimental evaluation of
stability of shells of revolution under axial and shear stresses. Jasion (2009) conducted linear
buckling and nonlinear post-buckling analysis of shells of revolution under external pressure and
determined that convex barrel shape shells are not stable in the postbuckling regime.
Bochkarev and Matveenko (2011) studied the dynamic and stability behavior of shells of revolution
under internal fluid pressure. Ummenhofer and Knoedel (2000) studied the effect of boundary
condition on the behavior of steel cylindrical shells under wind load. The initial geometric
imperfection that may be present in a shell reduces the buckling capacity. There are some
experimental and analytical works on shells of revolution with geometric imperfection available in
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the literature (Freskakis, 1970; Freskakis and Morris, 1972; Frano and Forasassi, 2008).
Abdullah et al. (2008) studied the fatigue life of shells with variable amplitude loading, while
Khamlichi et al. (2010) and Bahaoui et al. (2010) explored the effect of localized interacting defects
on the critical loads for cylindrical shells under compression. Thermal effect of the stability of
axisymmetric shells has been reported in the literature (Bagchi and Paramasivam, 1995;
Sheng and Wang, 2010; Ghorbanpour, 2002).

In the finite element context, there are two types of buckling analysis methods normally used,
linear and nonlinear. Linear buckling analysis is also called eigenvalue buckling analysis because,
it gives rise to an algebraic eigenvalue problem. This method has two versions, classical and fully
linearized buckling analysis. Linear buckling analysis gives good prediction of buckling lead of a
structure if the prebuckling rotations are negligible. However, in practice, shell structures have
considerable prebuckling rotations and linear or eigenvalue buckling analysis alone is not sufficient
to predict the stability limit of these structures. Full nonlinear analysis would give the exact
estimate of collapse lead in those cases. But full nonlinear analysis is very costly and time
consuming when the size of the structural model is large.

An improved methed for prediction of buckling load was suggested by Brendel and Eamm
{1980). The linear stability analysis usually performed for initial position was repeated at different,
load levels on the nonlinear prebuckling path. Thus a current estimate of the final failure load was
obtained and using this information the so called eigenvalue function was traced. They used the
characteristics of the eigenvalue function in predicting the nonlinear buckling load. Based on this
methodology Chang and Chen (1986) proposed a scheme for predicting actual buckling load of a
structure by properly combining linear buckling analysis and geometrically nonlinear prebuckling
analysis with minimum number of load steps. They have implemented the method for beams and
general shell elements and demonstrated the effectiveness of the method by some numerical
experiments.

The simplified nonlinear buckling analysis procedure develeped by Chang and Chen (1986) for
shells of revolution was extended by Bagchi and Paramasivam (1996). The method was
implemented by using cenical shell element with four degree of freedom (d.o.f) per node
(Navaratna et ¢l., 1968) as shown in Fig. 1 which was initially extended to solve for thermal stress
and buckling capacity of shells of revolution (Paramasivam et al., 1995; Bagchi and Paramasivam,
1995) The basic philosophy of this method 1s that critical load obtained by eigenvalue buckling
analysis based on stressed structure under a certain lead level, in most of the cases, will be closer

Fig. 1: The conical frustum shell (CFS) element
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to the actual stability limit than that obtained from an unstressed structure. This methed can be
used to determine the bifurcation point (where the load deflection curve deviates from the primary
path), if that exists. The present article provides an overview of the stability analysis of
axisymmetric shells with implementation of the linear and simplified nonlinear buckling analysis

procedure mentioned earlier including the effect of initial geometric imperfection.

THE AXISYMMETRIC SHELL ELEMENT

A conieal frustum shell element (Fig. 1) is used for the present analysis. The element has two
nodal circles (i and j) and four degrees of freedom (d.o.f.) at each nodal circle. The d.o.f.s correspond
to meridional displacement (u; and uw), circumferential displacement (v; and v), normal
displacement. (w; and w) and meridional rotation (f}; and p,). There are three components of the field
displacement, u, v and w; where, u and v are linear functions and w is a cubic function. The
displacement functions are expressed in terms of the nodal d.ofs and Fourier harmenics, n
(to represent the circumferential variation). L is the length of the element, s is the coordinate along
L and £ =s/L (a non dimensional coordinate):

u :Zz:(al +0,8) cos (nd)

v :j(ot3 +o,s) sin (nd)
0 (1)
W :Z:(Ot5 +0L6S+O(.7SZ + Ot853) cos (n@)
0
_dw

B =" ZO:(O(,6 +20(.75+3Ot852) cos (nd)

The field displacements u, v and w can be expressed in terms of the element degrees of freedom
using appropriate shape functions as shown in Eq. 2

u
Vi
Wi
u] [N, O 0 0 N, 0O 0 0
vi=| 0O N, 0 0O 0 N, 0 0 X
w 0 0 N,N, 0 0 NNy 31 -
1
WJ
B,
N, = (1—@) cos (nf) N, = cos (n0)
Nm:(l—@)sin (n9) ij:sin (ng)
N, = (1-387+28% ) cos (n0) N, = (38" —227) cos (n6)
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LINEAR BUCKLING ANALYSIS

In most shell structures, prebuckling stresses consist of both membrane stresses and bending
stresses and the problem basically becomes nonlinear in terms of load and displacements. Because
of this fact it is more realistic to find the nonlinear response of the structure by step by step
incremental iterative method which is an expensive and time consuming procedure. Linear
buckling analysis is comparatively very efficient but the results obtained by this method should be
interpreted carefully.

The strain-displacement relation of a structural element in the diseretized form can be written
as ¢ = B3, where B 1s the strain matrix. B matrix can be broken into two, part is contributed by the
linear part of the strain and the other part is contributed by the higher order terms in the
generalized strain expression. Considering the generalized strain-displacement up to the quadratic
term B matrix can be expressed in the following form (Wood and Zienkiewicz, 1977):

B = BO+%BHI(8) ®)

Differentiating the expression in Kq. 3 with respect to 8, we can obtain the strain-displacement
relationship in the ineremental form as shown in Eq. 4:

B=B, +B,(8) (4)
Then equilibrium equation in the incremental form can be expressed as in Eq. &

[ BT odV-F=0="1¥ () (5)

v

The solution of KEq. 4 can be approached iteratively, using methods such as, the Newton-
Raphson (NR) method or its modified version. Taking appropriate variation of Eq. 6 with respect
to & we have:

d¥ = | dBodV+| BdodV = K ,d3 (®)

where, IK; 1s the tangent stiffness matrix which can be expressed as the sum of K, the initial
stiffness, K;, the stiffness contribution due to geometric nonlinearlity or the second order strain as
shown in KEq. 2 and K,, the stiffness due to axial stress or the geometric stiffness, as shown in
Eq. 7. The expression for each of these stiffness terms are shown in Eq. 8;

K, =K +K 4K, (7)

K,=| BIDBdV
K, =| (B,DB, +B,DB, +BIDB, ) dV (8)

K, = [ 6" sadv
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In Eq. 8, § is a matrix of axial stress resultants and G represents a relation between the radial
displacements to the axial strain. D represents the constitutive matrix. The stress-strain
relationship is given by Kq. 9, where, N's are the in-plane stress resultants, M's are the moments
and i is the Poisson's ratio (assuming the material to be isotropic):

o=De
GT - {Ns NB NSB Ms MB MSB}
]:_)3x3 0
D - Et tz _
0 7D3x3
12 (9)
1 v 0

vl
I
<
<

The tangent stiffness matrix becomes singular (i.e., the determinant of the matrix becomes
equal or very near to zero) at the critical load level, indicating that the load vector would cause the
displacements to increase towards infinity. Let us assume that any arbitrary reference load
is applied to the structure and it deforms to a state described by 8. In linear buckling analysis it
is assumed that the incremental stiffness is a linear function of the displacements.
Therefore, a positive constant A, the structural deformation is deseribed as A4 & for the applied load
vector 6F. When the critical load level is reached, the following eigenvalue equation (Eq. 10) is
satisfied:

[KtAK K] {dB} =0 (10)

This algebraic eigenvalue problem can be solved by any standard algorithm. The lowest
eigenvalue gives the critical buckling load factor and corresponding eigenvector describes the
buckling mode. This formulation 1s called fully linearized buckling analysis. If the pre-buckling
rotations are zero or negligible K; in Eq. 11 may be removed and the eigenvalue problem reduces
to Kq. 9 which 1s called classical buckling analysis:

[KAAK,] §dd} =0 (11)

In buckling analysis of axisymmetric shells, the stiffness matrices are formed for varicus a
number of Fourier harmonics, n and the eigenvalues are extracted corresponding to each
harmonic. The lowest eigenvalue corresponds to the critical load. Derivation of the geometric
stiffness matrix for the Conical Frustum Shell (CFS) element is described in the following
paragraphs.

To obtain the initial stiffness I, the small stress strain relation (Eq. 12) is considered, while for
the geometric stiffness matrix K, and the large deflection stiffness matrix K;, the strains due to
large displacements (Eq. 13) are required to be considered:
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The element geometric stiffness matrices thus obtained are transformed and
assembled in the global geometric stiffness matrix and the eigenvalue problem is solved for
classical buckling analysis. For fully linearized buckling analysis K, matrix 1is also
included.

201



Trends Applied Sei. Res., 7 (3): 196-203, 2012

INITIAL GEOMETRIC IMPERFECTION

Initial imperfection in a structure can be treated as initial displacements in the structure
causing some 1nitial strains. In that case the complete strain field for a structural element can be
expressed as:

€ =g, tTe T, (14)

where, W is the normal component of initial imperfection in the geometry of the shell {assuming
that the imperfection 1s predominantly in the normal direction, not in other two directions). It 1s
assumed that the circumferential variation is proportional to the buckling mode shape and can be
expressed in terms of Fourier series in case the buckling mode shape 1s unsymmetric.

NONLINEAR BUCKLING ANALYSIS

Linear eigenvalue buckling formulation may also be applied to structures having a nonlinear
prebuckling path with a bifurcation or limit point. In this case the lowest eigenvalue is more or less
satisfactory estimate of the ultimate load. This eigenvalue analysis can be repeated for different
load levels producing an estimate of the buckling load in an advanced position. If the function of
the lowest eigenvalue is monitored parallel to the nonlinear load-deflection path it gives an
indication of the distance between the critical load and the load level reached. Finally the
eigenvalue function {also called the predicted-load curve (Chang and Chen, 1986) intersects the
load deflection curve in the critical point (Brendel and Ramm, 1980) as shown in Fig. 2.

From previous discussions it is clear that the linear (classical and fully linearized) buckling
analysis alone cannot give very useful prediction about the actual critical load of the structure. To
improve the the approximation linear buckling analysis based on a stressed structure under a
e Ay be performed (Chang and Chen, 1988). The buckling load so obtained
in most of the cases will be closer to the actual stability limit than that obtained from an unstressed

certain load level P

structure.

To perform this type of analysis, the base load level, P, __, is first applied in increments or single

bage
step and a conventional nonlinear analysis using Newton-Raphson method is performed. The
tangent stiffness matrix, K; corresponding to that equilibrium state is formed and as a succeeding

step a trial load increment is applied and based on the ineremental stresses and displacements K,

(2) (b)

Predicted-load curve

(0.P,)

Stability limit
7 (Piseer Pea)

> AL, ®.P)

O

Fig. 2(a-b); Scheme for simplified nonlinear buckling analysis: (a) the predicted load curve and (b)
determination of the collapse load
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and K, are formed. At this stage the eigenvalue problem is solved to find the proper load level
beyond the fundamental lead level, P
becomes singular. If the eritical load factors are plotted against the base load factors upon which

at which the tangent stiffness matrix of the structure

bage

the eigenvalue extraction are performed, P, . in the predicted-load curve (same as eigenvalue

funection on P-V curve) will always terminate at the point of coordinate (P_, P_).

bage

The combined nonlinear and linear buckling analysis outlined above can be applied with either
the fully hinearized or classical buckling analysis. First, a linear buckling analysis on a unstressed
structure is performed and an approximate critical load, F_, is obtained; then, at certain base load
level P, another linear buckling analysis is performed to obtain a new prediction of buckling load,
P Finally, on a (P P_.)is made
to find its intersection with the 45° line. This approach for critical load prediction requires

s o) BTaph (Fig. 2b), extrapolation from point (0, P_)) and (P,

significantly less computation than that for conventional geometrically nonlinear analysis. [t may
provide a suitable guideline for applying load increments when a load-deflection curve is required
to be traced. This procedure referred to as simplified or Quasi Nonlinear Buckling Analysis (QINBA)
method by Bagchi and Paramasivam (19986).

NUMERICAL EXAMPLES

Truncated hemispherical shell subjected to axial tension: This is an interesting problem.
The geometry and loading are as shown in Fig. 3. Under the action of axial tension, compressive
stress develops in the hoop direction. This compressive hoop stress leads to buckling of the shell.
This problem was originally reported by Yao (1963). He has presented experimental as well as
theoretical results. His theoretical analysis was based on Galarkin's approach. Yao found a
considerable discrepancy between theoretical and experimental buckling loads. The present
analysis supports the theoretical value of critical load obtained by Yao (1963). Fully Linearized
Buckling (FLB) analysis improves the result to a large extent. If the effect of imperfection is
considered the value of buckling load obtained here is comparable to the experimental result. The
values of different eritical loads and number of circumferential waves are given in Table 1.

The truncated hemispherical shell problem (Fig. 3) is solved considering initial geometric
imperfection and it is found that if the maximum deviation of the shell surface from the perfect
peometry is equal to 0.4 times the thickness of the shell, the buckling load is 11.73x107* N/m
{n = 40). This value 1s comparable to the experimental value of the buckling lead reported by
Yao (1963) which is 10.76x107* N/m (n = 39) (Table 1). The classical buckling mode shape is
presented in Fig. 4.

H=1914in,t=0.01 in, o = 23.5",
R=48in, E=10"1b/in".

frr 1 1

Fig. 3: Truncated hemispherical shell under tension
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L
v
A A
P P

R=100cm.t=1.0 cm.

E =2x10°kgflem®, v = 0.3
Fig. 5: Axially loaded cylinder
Tahble 1: Buckling load of a truncated hemispherical shell under tension
Present (classical) Present (fully lin.) Yao (1963) (theory) Yao (1963) (experiment)
13.98 (40 8.17 (49) 13 .50 {40) 6.15 (39)

*Values in the parenthesis indicates value of n. The critical load is in 10¢ IbAin

Cylinders under axial load: Buckling of cylinders received a lot of attention of the engineers
because of the extraordinary discrepancies between the buckling loads obtained by theory and
experiment. Buckling of cylinders is greatly influenced by initial geometric or load imperfection and
residual stresses in it. Here, the behaviour of the perfect eylinders is discussed and the closed form
solutions are used to check the results obtained by linear buckling analysis theory. For perfect
cylinders with simply supported edges, classical solutions are available (Timoshenko and Gere,
1963).

Finite element. analysis agrees well at the above mentioned points. Results of axially compressed
cylinders (Fig. 5) with different L/R and t/R ratios are presented in Fig. & and Table 2, respectively.
From these tables it 1s clear that L/R ratio has very little effect (unless the cylinder i1s very short or
very long) on critical load compared to the t/R ratio. Buckled shape of an axially loaded simply
supported cylinder with modulus of elasticity £ = 2x10° MPa, v =0.3 and L/R =0.4 is shown in
Fig. 7 as an example.

A spherical shell with external pressure and initial geometric imperfection: A spherical
shell with geometry as shown in Fig. 8 is censidered. B = 2x10° Mpa and v = 0.3. The shell is
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P, (kN)
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400 1

200 1

0 T T T 1
0.0 0.5 1.0 L.5 2.0

LR

Fig. 6: Critical load for axially loaded cylinders

Assumed shape of
imerfection

Fig. 8: A spherical shell with geometric imperfection

Table 2: Effect of R/t ratio on the critical load of axially loaded cylinders

(t/R)*100 P.. (present) KN P.. (present)/P.. (Navaratna ef al., 1968)
1.0 79.32 1.043
0.5 19.53 1.027
0.3 6.95 1.020
0.1 792 1.015
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subjected external pressure. Initial geometric imperfection of the shell i1s considerd parallel to the
buckling mode.For different values of W/t and PJ/P, ratios are shown in Fig. 9. Here, Ws the
amplitude of initial geometric imperfection with respect to the perfect meridian of the shell, t is the
thickness of the shell, P, is the buckling load for the imperfect shell and P, is the buckling load for
the perfect shell. Similar types of problems were studied by Freskakis (1970) and Freskakis and
Morris (1972). Although he assumed different shape of imperfection, those results are also
presented here as reference.

It 1s observed from Fig. 9 that the buckling load reduces with the magnitude of initial geometric
imperfection and the rate of reduction in buckling lead increases with the increase in the
magnitude of imperfection.

Spherical cap subjected to axisymmetric ring load: The geometry of the spherical cap is
shown in Fig. 10. Geometrically nonlinear analysis of this shell was presented by Wood and
Zienkiewicz (1977). The limit load is obtained from the graph presented by them (Plim = 336.0 N)
and is compared with the collapse load obtained using simplified nonlinear buckling procedure
NBA (Bagchi and Paramasivam, 1996) which is (Per* = 861.3 N) and found to be significantly
close (deviation of QINBA result is about 7.5% from actual axisymmetric collapse load).

1.2 9 _¢—ForP, (present)
—il— For P, (Freskakis, 1970)

0.0 T T
0.0 0.1 0.2 0.3 0.4

Imperfection (w/t)

Fig. 9: Effect of geometric imperfection on the critical load of the spherical shell

P (Total load )
L »
>
___________________ -
Deflected shape v
. »|

R'=120.853 mm, R =22.86 mm
H=2.184 mm, /R = 0.42

E = 6.89¢+4 MPa, v=0.3
t=0.4 mm

Fig. 10: A spherical cap with ring load
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400 4
350
300
250
200

Pcr*

150
100
50 1

0 T T T T T 1
0.0 0.1 0.2 0.3 0.4 0.5 0.6
/R

Fig. 11: Effect of load ring diameter on the collapse load

It should also be noted that, axisymmetric shell subjected to axisymmetric load may not show
axisymmetric collapse. The present analysis method is applied for other buckling mode with
different numbers of circumferential waves and a still lower value of buckling lead 1s recorded. For
non-axisymmetric buckling Per®* = 272.3 N. Figure 11 shows the variation of the collapse load with
the position of the ring load. As the ring diameter increases, the collapse load increases.

CONCLUSIONS

The study provides a review of buckling behaviour of shells of revolutions with a systematic
development of the conical shell elements and detailed formulation including geometric
imperfection. It also presents the analysis of a number of cylindrical and spherical shells and
compares the experimental collapse loads with the numerical results whenever available and
performs the sensitivity of length, radius or length on the buckling load as appropriate. It is found
that the numerical results albeit slightly unconservative can provide a good idea about the actual
collapse load and the simplified nonlinear buckling analysis produces a reliable estimate of collapse
loads when prebuckling rotations are significant. However, further work is necessary to study the
effectiveness of the QNBA method for axisymmetric shells with more sophisticated elements. Based
on the work presented in this article, the following conclusions are made:

*  The two-noded conical frustum shell element is found to be very efficient for stability analysis
in spite of its inherent limitations in modelling curved meridians. In the case of a curved
meridian, very small elements should be used. Curved elements are not studied in this study

*  The classical buckling analysis is faster than the fully linearized buckling analysis. But the
classical buckling analysis gives good prediction of actual buckling load only in the case of
structure with membrane stresses alone or with negligible bending stresses

¢ The fully linearized buckling analysis gives lower buckling lead than that obtained by the
classical buckling analysis. But sometimes, it may also give very conservative result when
prebuckling rotations are higher

« Convergence of the critical buckling load obtained by the classical buckling analysis with
increasing number of elements 1s from the top and the buckling lead predicted by this method
is always in the higher side and unconservative

¢+ The nonlinear buckling load prediction by the simplified nonlinear analysis 1s found to be
straight forward and very much economical. It gives reasonably accurate estimate of the actual
collapse load of a structure with minimum effort
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