@

Academic
Journals Inc.

Trends in

Applied Sciences
Research

ISSN 1819-3579

www.academicjournals.com




Trends in Applied Sciences Research 7 (3): 210-220, 2012
ISBN 1819-3579 / DOI: 10.3923/4asr.2012.210.220
© 2012 Academic Journals Inc,

A New Reinforcement Learning Optimization Method for Capacitor
Allocation Considering Variable Load

Mehdi Ahrari Nouri and Ali Reza Seifi

Schodl of Electrical and Computer Engineering, Shiraz University, Iran

Corresponding Author: Mehdi Ahrart Nourt, School of Electrical and Computer Engineering, Shiraz University, Iran
Tel: +98 711 2303081 Fax: +98 711 6287294

ABSTRACT

In distribution systems shunt capacitor banks are widely used for reactive power compensation,
power and energy loss reduction and improving voltage profile. In this study by using
Reinforcement Learning (RL) approach and heuristic strategies a method for reactive power
optimization in distribution systems is presented. The approach is consist of determining values and
locations of capacitor banks and alsc optimal position of tap in an Under Load Tap Changer (ULTC)
transformer under voltage and current constraints for total load’s curve duration. The eptimization
problem has to be solved in the way so that the load demand loss and systems energy loss are being
minimized. By using double agent -Learning a new method for this problem is proposed and the
results are compared to other similar researches.
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INTRODUCTION

One of the most common methods for loss reduction in medium voltage systems is reactive power
compensation. Because of inductive loads in power systems there will be reactive power in the
system as well as the active power. The primary sources for reactive power generation are power
stations, so reactive current flow 1s from station to consumers. Therefore, according to this matter
the reactive current has to pass through all the power system’s section which will generate loss in
the system and occupies bus’s and equipment’s capacity. The best location for reactive power
compensation is the location close to consumers which 1s the distribution system.

By reactive power compensation we achieve other goals such as energy loss reduction, active
power generation in the load’s peak demand, system capacity release, power factor correction and
improving veltage profile (Abdelaziz ef al., 2011). Cne of the most common methods for reactive
power compensation is using shunt capacitor banks in the distribution system. In this method,
values and locations of the capacitors have to be determined so that the benefit from capacitor
allocations would be maximized (Liang and Cheng, 2001; Augugliaro et al., 2004). The ULTC with
switching capacitors are used for reactive power optimization so that the system operational
constraints are satisfied and we use ULTC for the same reason in our proposed method. In many
of papers published for reactive power optimization the load profile is consider constant
{Azim Swarup, 2005; Bhattacharya and Goswami, 2009), but if the optimization process 1s done
during the load’s varying period, the results will be more usable in real applications so in this

research the variable load 1s considered.
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The solution technique for loss minimization can be classified into four categories: Analytical
{(Grainger and Civanler, 1985a-c), numerical programming (Wang et al., 1997a, b), heuristic
{Abdel-Salam et al., 1994; Haque, 1999) and artificial intelligence based (Abdel-Salam ef al., 1994;
Mekhamer et «al., 2003; Miu et al., 1997, Delfanti and Gianpietro, 2000; Adeyvemo, 2011;
Ahmed and Zamli, 2011; Dehini ef al., 2012; Saxena ef al., 2011; Otienc and Adeyemo, 2010;
Sutha and Kamaraj, 2008; Yap et al., 2011). Reinforcement Learning (RL) recently has been used
in different fields of electrical engineering and computer science applications. In reinforcement
learning the agent learns by trial and error and exploring the dynamic environment, chooses the
optimized action. Trial and error learning is based on animals learning psychological methods
{(Hagan and Krose, 1997).

In this study, a new optimized solution for the capacitor allocating problem in distribution
systems by using RL approach and control of under lead transformer ULTC for whole load curve
is proposed.

CAPACITOR ALLOCATION FORMULATION

The algorithm of finding the values and locations of capacitor banks is based on a goal function
which 1s defined as a cost function (cost function means all the costs such as capacitor costs, energy
production costs and ete.) then the values and locations of capacitor banks will be chosen to
minimize the total cost for the entire load’s period. For a constant load level the goal function is
defined as:

Costfunction:prPLm+§ (Co + Cr Q) (1)

And for several loads’ levels the goal funection is defined as:

Costfunction = K, %1 P,... T, +Kp Prok +inzi(cms 1C Q) (2)
Where:
K, = Cost per power loss ($/kwlyear)
K; = Cost of energy loss ($/kwh)
Pi1we = Power loss in the ith load level (Kw)
T, = The load level Duration of episode I (Hour)
n, = Number of load’s levels during the studying pericd
P... = The amount of peak station’s generation (MW)
n, = Number of installed capacitors
Ciuar =  Cost for each KVAR capacitor bank ($/KVAR/year)
C. = Capaator allocation costs (3/KVAR/year)
@; = The amount of capacitor bank installed on loecation I (KVAR)

The length of the study period is one vear so we have:

ST - 8760 (3)

i=1
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The Under Load Tap Changer (ULTC) usually installed in a main transformer is employed to
adjust the secondary voltage. UULTC 15 one the Veltage regulators that voltage changes according
to the taps on the primary winding. In this study a 10% ULTC with 16 taps at the beginning of
distribution feeder has been used during the study period.

In capacitor placement some constraints according to the power quality have to be satisfied. The
first constraint 1s the load flow convergence. For satisfying this constraint the direct load flow 1s
used (Teng, 2003). This algorithm is a classic method which can be use in radial and mesh
distribution systems.

For controlling the consumer’s power quality each bus’s voltage has to be between a minimum
and maximum allowed value. So in each capacitor allocation states this constraint should be satisfy
by using Eq. 4:

Vo <V<yv o I=12,..,n (4)
Where
V... = Minimum allowed voltage
Vo = Maximum allowed voltage
n = Number of busses
Vi = ith bus voltage value

According to the limitation of existing capacitor banks for installation, the maximum
compensation constraint could be useful for achieving the optimized solution faster. For example
the maximum compensation in each bus according to the Eq. 5 is equal to the total amount of
system’s reactive load. So during searching the optimized solution there is no need to search the
states where compensation in those states 1s more than the total amount of the reactive load:

0<Q£ Qs (5)
Where:
Qe = The maximum compensation (total amount of reactive loads of the system)
&, = The amount of compensation installed on the ith node

REINFORCEMENT LEARNING

Reinforcement learning is defined by Kaelbling et al. (1996) as ‘the problem faced by an agent
that must learn behavior through trial-and-error interactions with a dynamic environment.,
Mathematically, the reinforcement learning problem has been formalized as a Markov decision
process {a process where the probability of the agent moving from one state to another, given its
chaice of action, is independent of the history of the system prior to reaching that state). The
mathematics of Markov processes has been extensively studied, one significant result, Bellman
(1957), showed that an algorithm based on dynamic programming can be shown to converge to an
optimal policy if the Markov process is stationary (a stationary Markov process 1s one in which the
state transition probabilities, given the agent’s choice of action, do not change over time).

In the standard reinforcement-learning model, an agent is connected to its environment via
perception and action. On each step of interaction the agent receives as input I, some indication of
the current state, s, of the environment,; the agent then chooses an action, a, to generate as output.
The action changes the state of the environment. The value of this state transition 1s communicated
to the agent through a scalar reinforcement signal (Sutton and Barto, 1998).
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Formally, a RL problem consists of:

¢« A discrete set of environment states, S

* A discrete set of agent actions, A

* A set of scalar reinforcement signals, R

+ Policy T which chooses the actions that has to be taken

*  Value function which maps each state to a measure of the expected discounted future reward
that agent, will receive by the following policy ©t

In a KL problem the agent’s goal is to find {(or learn) a policy m: S-A, mapping states to actions
that maximizes the reward it receives in the long run:

¥ = arg max, V" (s), Vs (B)

where, V* () is called the value-function for policy .

Almost all reinforcement learning algorithms are based on estimating value functions which
value funetions are functions of states that estimates how good it 1s for the agent to be in a given
state. We have the policy T which is mapping from each state se€5 and action a€A, to the probability
P(s,a) of taking action a when the state 1s s:

V(5= By (R, 5, =5h = BES or s, = 5) (N

where, K _{ } denote the expected value given that the agent follows poliey m. In general, we seek
to maximize the expected return, where the return R, is defined as some specific function of the
reward (r) sequences. In the simplest ecase the return is the sum of rewards:

R =1yt ATy (8)

where, t denote the time steps and TH 1s the final time step. We have this notion of final time step

when the agent-environment interaction breaks naturally inte subsequences called episodes. The

additional concept that we need 1s that of discounting. According to this approach, the agent tries

to select actions so that the sum of the discounted rewards it receives over the future is maximized.
We can use discount factor v, (O<y <1) in the Kq. 9, so we have;

Ro=r,+ym,+ erna‘“' = E’U’Ykrwkﬂ (9)

The discount rate determines the present value of future rewards: a reward received k time
steps in the future, is worth only y*' times what it would be worth if it was received immediately.

Q-learning: One of the most important breakthroughs in reinforcement learning was development,

of an off-policy Temporal-difference (TDD) control algorithm known as Q-learning).
Its simplest form, one-step Q-Learning, 1s defined by:

Qlspa) = Q (spa)tafr, FymaxQ (s,.a)-Q (s,a,)] (10)
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It 1s important to note that the new value for Q (s, a) memory is based both on the current
value of Q (s, a) and the values of immediate rewards obtained by next searches (r ). So, the «
parameter plays a critical role representing the amount of the updated Q-memory Eq. 10 and
affects the number of iterations.

This 1s identical to Sarsa learning except that when considering the next state action transition,
the action is chosen that will maximize the next @-value. Q-learning is shown to converge to an
optimal policy under the usual assumptions (Watkins and Dayan, 1992) and it remains the most,
popular reinforcement learning algorithm because no model of the environment is required, it is
intuitive, easy to implement and can be run interactively with updates made immediately, as and
when states are visited.

Actoin-value method: Unlike the supervised learning methods in RL the environment is
explicitly on the trade-off between exploration and exploitation. The agent must learn which
actions maximize reward function in the time, but also how to act to reach this maximization,
looking for actions still not selected or regions not considered in a state space. The exploration and
exploitation processes are usually mixed. Action-value methods are used to estimating the values
of actions and for using the estimates to make action selection decisions. The simplest action
selection rule is to select the action (or one of the actions) with highest estimated action value, that
18, to select on play t one of the greedy actions, a*, for which:

Q, (a*) = max,Q, (a) (11)

&, (a) Estimated value of action a at the t play.

This method always exploits current knowledge to maximize immediate reward; it spends no
time at all sampling apparently inferior actions to see if they might really be better. A simple
alternative is to behave greedily most of the time, but every once in a while, say with small
probability e; instead select an action at random, uniformly, independently of the action-value
estimates. We call methods using this near-greedy action selection rule e-greedy methoeds. An
advantage of this method is that, in the limit as the number of plays increases, every action will be
sampled an infinite number of times.

THE PROPOSED METHOD

For solving the capacitor allocation problem using the reinforcement learning method states and
actions, reward function and the optimized solution with a fast convergence are should be
determined.

According to the power system’s topology, the environment is defined as electric network and
the standard capacitor banks values for the system (Mekhamer ef af., 2003) and the taps of ULTC
are chosen as actions and the buses suitable for capacitor placement, are chosen as states. The
policy 18 based on Q-learning algorithm and e-greedy action value method is used for choosing the
actions.

According to the novel method introduced for one load level capacitor placement (Nour et al.,
2007), three methods have been proposed. In the first method the load’s curve 1s divided into
constant levels and after capacitor allocation process for each of them, among all the responses by
using Eq. 2, the response with the minimum cost will be chosen as the optimized sclution. The
second method is similar to the first method except that after capacitor allocation for each load’s
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level and achieving sufficient results instead of testing all the results in the first step the most
appropriate response will be chosen using the Kq. 1 for each load’s level and then by using Eq. 2
the best solution will be determined among all the chosen solutions so by using a heuristic
procedure a search space will be reduced. In beth first and second methods the reward funection is
chosen by using Kq. 12 so the instant rewards have more effect on the optimal policy. The third
method 1s similar to the second method but discount reward function has been used, where in each
load’s level the reward is constructed from total amount of power loss’s costs, installed capacitor for
that level and other level’s power loss according to the discount factor (v). In this way, the effect
of each capacitor banks installed is considered for the other load levels during the load changing

curve:
U S (12)
W cost(B,)  cost(Chyy)
1 1 2 1
LT cost(Pi_ ) B cost(Ciy ) B ;Yk ) cost(p, ) (13)
Il Less
= Tx
1, />: . (14)
Where:
o= The ith load level's reward function
P, = Power loss in the ith load level (kW)
¢, = The installed capacitor for the ith load level (KVAR)
m = The number of load’s levels
P, = The power loss in the kth load level (kW)
T, = The kth load level's duration (Hour)

The algorithm of first method is as below

. Read input data (consist of number of system buses (n) and lines impedances) and number of load levels () and complex power

of each of them.

. Putl=1

. While [<m
3-1j=n
3-2 whilej=1

3-2-1 state (=) —bus n
3-2-2 choose greedy action a by using e-greedy method
3-2-3 perform load flow and calculate loss power
3-2-4 Using Eq. 12 and calculate the reward of next episode
3-2-56 Update Q-function using Eq. 10
3-2-6j =j-1
3-3If the voltage constraint of Eq. 4 is guaranteed for all system buses go next step otherwise return step 3-1
3-4 Save the results of chosen action, results and load flow
3-51=1I+1

. Calculate the cost function Eqg. 2

. Print the result with the least cost
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The values of two parameters y and « for implementing the Q-learning algorithm need to be
chosen. Parameter v, 1s the control factor by which later rewards are discounted and it must be
between 0 and 1. In our application, in each load level later rewards are not important because
there is no interdependence among load flow solutions, therefore, the value of v is initially set to
be zero. The critical parameter @ used in Eq. 10, expresses the amount, of the updated Q-function,
in other words the rate of learning. A large encugh parameter (close to 1) allows fast convergence
of the Q-learning algorithm, while a small value (close to 0) avoids instability of @-learning. Since
the Q-learning enforced in constrained load flow problem does not depend on previous @-learning
steps as stated above, this parameter will work well close to 1.

In our application, initially we set v = 0 and « = 1, but by these values the agent is so myopic
and the effect of future actions will not take into account at all. Therefore by using a dynamic
approach ¥ and ¢ are changing slightly between 0<v<0.5 and 0.5<¢<1. By experiment the best
value for @ 15 0.995 and for v 15 0.005.

The value of 2 1s chosen equal to 0.1. Small values for & prevents the agent from explaiting and
choosing new actions and large values prolong the search time and the solution might not converge.

In order to consider the effect of ULTC in the power system after determining the value and
position of capacitor banks by one of the methods deseribed above, if the Kq. 4 during the whole
load curve 1s not satisfied another Q-Learning policy 1s implemented so that the tap positions are
new actions and the number of load levels are states. The same e-greedy method is used for action
selection. The optimal position of tap in the ULTC is determined so that all constraints are achieved
and the tap movement in the ULTC is minimized too.

In order to considering the effect of load levels change during study period the load curve 1s
discrete into several load levels.

RESULTS

Two 9-huses and 33-buses systems have been studied in this section. In order to reviewing the
energy loss role, the generation cost value is not taking account during the load's peak demand.
The cost of generating one kilo watt hour energy (Kg) has been assumed equal to 1 $/EKwh and
loss’s costs per year equal to K =168 ($/kw). Allowed voltage range is V =09 p.u and
Vo..=1l1lpu

Leoad’s changing curve in one day is assumed as Fig. 1 (Taleski and Rajicic, 1998),

The load’s changing curve is divided into different load levels and the three mentioned methods
described above have been applied to them. In Fig. 2, load’s changing curve 1s divided into 40
levels,

1.0 1
0.9
0.8 1
0.7 1
0.6 1
0.5 1
0.4 1
0.3
0.2 1
0.1 1

p.u

0 4 8 12 16 20 24
Hour

Fig. 1: Lead’s changing curve in one day (TALESEKI, RAJICIC, 1998)
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Fig. 2: Load’s changing curve is divided into 40 levels

Table 1: Capacitor placement resulting in the 9 buses system for 40 load levels
(Kwvar) Installed Capacitor

Bus number Method 1 Method 2 Method 3
2 0 600 0

3 600 0 0

4 500 1200 1350

5 450 900 0

6 0 0 300

7 450 0 300

Total cost (%) 2,569,800 2,571,900 2,571,000
ULTC tap position (p.an) 1.0267 1.0267 1.0267
Total cost decrease (%) 4.4508 4.3713 4.4034

9-buses system: A 9-buses system has been used as the first case study (Chin and Lin, 1994). The
systems nominal voltage 1s 23 Kv and system’s total reactive load 1s 4186 Kvar. So, we can use 27
combinations of standards capacitor banks (Mekhamer et al., 2003) where there will be 9 states and
28 actions (the case of no capacitor that means no action 1s taken is added too). According to
40 levels division of the load’s curve the energy loss’s cost before capacitor allocation is equal to
2'689'6500 §. In Table 1, the results of capacitor placement and comparison among three methods
are shown.

It 1s clear the first method has the hest cost decrease and the second position is belongs to
method two. The position of ULTC tap shows that the voltage should by multiply by 1.0267 in order
to Kq. 4 satisfied during lead changing curve.

33-buses systems: The second case study is a 33-buses system according to Baran and Wu (1989).
The systems nominal voltage is 12.66 Kv and system’s total reactive load is 2300 Kvar. The energy
loss’s cost before capacitor allocation in spite of 40 load’s levels 1s 605'720 §. The schematic of this
system is illustrated in Fig. 3. In this system there is no need for using the ULTC and the tap
changer’s position at the beginning of the line 1s set to 1 per unit. The first method is steel has the
best results so it is chosen as the optimal method (Table 2).

Comparison: The proposed method one is selected to compared with the method used for capacitor

allocation by Galego et al. (2001) for continucus load curve. The results by Galego ef al. (2001) for
a 9-buses system with 2 load’s levels (1000 h S=1.1kVA, 6760 h S =0.6 KVA and 1000 h S =0.3
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Fig. 3: The 33-buses system

Table 2: Caparitor placement resulting in the 33-buses system for 40 load levels

Method Bus number 9 12 21 22 25 Total cost (F) Total cost decrease (%)
1 Install. Cap. (KVAR) 150 150 150 150 150 520,030 14.1463
2 Bus No. 14 25 - - - 526,370 13.1005
Install. Cap. (KVAR) 450 300 - - -
3 Bus No. 14 23 - - - 524,040 13.4845
Install. Cap. (KVAR) 300 300 - - -

Tahble 3: The capacitor placement results in the 9-buses system for (GALEGO, MONTICELLI, ROMERO, 2001)

Bus No. (KVAR) Installed capacitor Total cost decrease (%)
2 300 8.15

5 300

6 600

7 1200

Table 4: The results of method 1 for capacitor placement in the 9-buses system

Bus No. (KVAR) Installed Capacitor Total cost decrease (%) ULTC tap position (p.uw)
5 2400 9.95 1.0467

7 600

10 150

KVA) using heuristic methods, genetic algorithm, tabu search and simulate annealing are shown
in Table 3.

The cost for the system before capacitor allocation is 329,039 §. We use method one that has the
best answers for the comparison. The cost function is edited as Galego ef al. (2001) and the results
are mentioned in Table 4. As it is shown in this table the method one result is better than the
results by Galego et al. (2001) and the system also does not have the voltage drop problem.
However, Galego et al. (2001) divided load’s curve into 3 levels whereas in the proposed method in
this study the load’s curve can be divided into several more levels.

CONCLUSION

In the proposed method the multi agent reinforcement learning along with heuristic strategies
is used for capacitor placement and reactive power compensation in the distribution power system.
The method is quite simple compare to other complicated mathematical optimization artificial
intelligence bhased methods. Fixed standard capacitor banks and under load tap changer
transformer UULTC used and better results are achieved compare to previous methods.
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In most. of methods for optimizing the reactive power in distribution systems the load’s profile
is assumed as a constant level, that this assumption is the reason where results in theory are
different to one done in practice, but by the proposed method the values and locations of the
capacitor banks could be find over the entire distribution system'’s load curve and so more realistic
results are achieving.

The designed algorithms were applied in standard power systems and comparison of results are
shown the advantage of these methods to methods done by now.
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