@

Academic
Journals Inc.

Trends in

Applied Sciences
Research

ISSN 1819-3579

www.academicjournals.com

Trends in Applied Sciences Research 7 (4): 285-302, 2012
ISEN 1819-3579 / DOI: 10.3923/tasr.2012.285,302
© 2012 Academic Journals Inc,

CFD-Mine: An Efficient Algorithm For Discovering Functional and
Conditional Functional Dependencies

"Musbah M. Aqel, *Nidal F. Shilbayeh and *Mohammed S. Hakawati

Taculty of Science and Informaticn Technology, AlZarga University, Zarga, Jordan

*Faculty of Computer and Information Technology, University of Tabuk, Tabuk, Saudi Arabia
Faculty of Information Technology, Middle East University, Amman, Jordan

Corresponding Author: Nidal F. Shilbayeh, Faculty of Computer and Information Technology, University of Tabuk,
Tabuhk, Saudi Arabia

ABSTRACT

Dirty data is a serious problem that affects many enterprises across all aspects of their business
ranging from operational efficiency to revenue protection. In this study, we present a new
algorithm called CFD-Mine that efficiently discovers all pessible rules and determines the minimum
set of these rules using functional Dependencies (FDs) and Cenditional Funetional Dependencies
(CFDs) for detecting inconsistencies in data. The algorithm is based on the level-wise search
algorithm that extends TANE, a well-known algorithm for discovering FDs. CFD-Mine searches for
the minimum CFDs among the data values and prunes redundant candidates. The conducted
experiments show that CFD-Mine is scalable and applicable to work efficiently when the data sets
are large,

Key words: Data cleaning, functional dependency, conditional functional dependency, data
quality, data inconsistency

INTRODUCTION

The presence of errors and inconsistencies in data dramatically reduce the value of data,
making it worthless, or even harmful. In 2000, statistics estimated that data quality costs US
businesses 3600 billion annually (English, 2000). It is also estimated that data cleaning, a labor-
intensive and complex process, accounts for 30 to 80% of the development time and budget in most
data warehouse prgjects (Shilakes and Tylman, 1998). Studies conducted by many researchers
forecast that more than 50 percent of data warehouse projects will have limited success, or will be
outright failures, as a result of the lack of attention to data quality issues (Sagiroglu and
Ozturan, 2006; Sahai ef al., 2005; Wel et al., 2007; Al-Nabhan ef al., 2008). As a result of the
previous statistics and studies, there 1s an increasing demand for data cleaning tocls that
automatically detect and effectively remove inconsistencies and errors from the data.

Dirty data often arises due to changes in use and perception of the data and violation of
integrity constraints (or lake of such constraints) (Chiang and Miller, 2008). Inconsistencies and
errors in a database often emerge as violations of integrity constraints (Arenas et al., 2003;
Rahm and De, 2000; Eenuga and Sadasivam, 2009).

Constraint-based data cleaning has mostly focused on two concepts, introduced by
Arenas et al. (2003), a repair and a consistent query answer. A repair 1s to find another database
that is consistent and differs minimally from the original database. A consistent query answer is
to find an answer to a given query in every repair of the original database, without editing the
data.

285

Trends Applied Sei. Res., 7 (4): 285-302, 2012

The limitations in traditional dependencies lead the researchers in data cleaning to revive
actions by considering extensions of FDs and INDs (Inclusion Dependencies), referred to as
Conditional Functional Dependencies (CFDs) and Conditional Inclusion Dependencies (CINDs)
respectively. The extended functional dependencies additionally specifying patterns of semantically
related values; these patterns impose conditions on what part of the relation(s) the dependencies
are to hold and which combinations of values should occur together (Fan et al., 2009).

In this study, we present a new approach that uses recent advances in constraint-based data
cleaning and the CFDs rules to repair the dataset based on two main phases:

* Discovering rules, to find the rules that the relation depends on
*+ Repairing inconsistencies, by identify tuples that have some error in some of its fields
{(violate the discovered rules)

The main contributions of this research paper are the following:

« We developed an algorithm for discovering a minimal set of Conditional Functional
dependencies (CFDs) and a minimal set of Funectional Dependencies (FDs). Even though, the
underlying ideas are not new, but this is the first attempt to develop a concrete algorithm for
discovering both rules from a large datasets

« We used two new pruning techniques in our algorithm to reduce the number CFDs to be
checked hence improving its performance. The first technique merges the similar CFDs for
discovering a few and more accurate rules, while the second technique finds the minimal set,
of CFDs based on the intersect partitions between the candidates that formed the rules

« We implemented an application for discovering the CFDs and FDs from any dataset located
anywhere and with any extension. The application generates the partitions for the attribute
set and then generates the rules. The application also allow us to change the accuracy of the
discovered CFD rules and filter the discovered rules after generate them

¢ The results of experiments we conducted on syntactical datasets shows that our algorithm is
scalable and can be used to discover FDs and CFDs in a large datasets

PRELIMINARIES
Relation schema definition: A relation schema R is a finite set of attributes. The domain of an
attribute A, dencted by Dom (A) 1s the set of all possible values of A, a tuple t over a relation
schema R={A,....... A_}is a member of the Cartesian product Dom (A)) x.... x Dom (A_), a relation
r over R is a finite set of tuples over K. The cardinality of a set X of tuples is dencted by [X].

If X ¢ Ris an attribute set and t a tuple over R, we denote by t (X) the restriction of t to X. The
projection of a relation r over R onto X is defined by m, (r) = {t(x) |t € x}. A database schema R is a
finite set of relation schemas R, A database d over R is a set of relations r, over each K, € K.

Functional dependency definition: Let r (R) be a relation and X, Y ¢ R. A Functional
Dependency (FD) is a constraint, denoted by X = Y. The FDD X — Y 15 satisfied by r(R) if every two
tuples t;, t, € r(R) that have t,(X) = t,(X) also have t,(Y) =t,(Y). In an FD X=Y, we refer to X as the

antecedent and Y as the consequent.

Levelwise algorithm: The idea of the levelwise algorithm is to start from the most general

attributes and try to generate and evaluate more and more specific attribute set (Pramada ef al.,
2012; Q1 and Wei, 2008; Sharma et al., 2007; Thakur et al., 2007). The semi-lattice in Fig. 1 shows

286

Trends Applied Sei. Res., 7 (4): £285-302, 2012

PSSR
SRS

S

ABCD

Fig. 1: Lattice for 4 attributes

the search space of an exhaustive algorithm for finding rules for four attributes and all possible
nonempty combinations of the four attributes (A, B, C and D) (Mannila and Toivonen, 1997).

Conditional functional dependency definition: CFD extend FD by incorporating a pattern
tuple of semantically related data values.

For each attribute A in a schema R, we denote its associated domain as Dom (A) which is either
infinite (e.g., string; real) or finite {(e.g., Boolean, date). A CFDfon K 1s a pair (R: X =Y, Tp).

Where:

¢« X and ¥ are sets of attributes in attr (R)

« X — Yis astandard FDD, referred to as the FD embedded in ¢

* Tpis atableau with attributes in X and Y, referred to as the pattern tableau of ¢, where for
each Ain X — Y and each tuple t € Tp, t{A) is either a constant ‘a’ in dom(A), or an unnamed
variable ‘' that draws values from Dom(A) (Fan ef al., 2009; Wang et al., 2011)

Medina and Nourine (Raoul and Lhouari, 2008), present the idea of decomposition the relation
into a small relations (X-complete horizontal decomposition) denote by RX(r) the set of all
X-complete fragment relations of r. More formally: RX @) ={r' > r | ris X-complete}.

When stating that FDD holds on the entire of relation, the CFD is a FD hold on a sub relation
of R, but to find a hybrid idea between them, let's consider the decomposition of the relation R into
small sub relation based on CFD which means that these CFDs holds on a specific sub relation and
maybe interleaved with another sub relation.

Table 1 shows a sample records from library instance which contains records about items
available in the library and its attributes are Name, Type, Country, Price and Tax and this relation
holds on this Functional Dependency:

FD: (Name, Type, Country) — (Price, Tax)
Intuitively, we can recognize the following inconsistencies:

* The entire Harry Potter bocks sell in France don't have any tax rate, but in t, we notice that
this tuple has 0.05 tax rates which viclate the semantic constraint

* There are two different prices to the same item in same country which means that one of these
tuples violates the semantic constraint

287

Trends Applied Sei. Res., 7 (4): 285-302, 2012

Table 1: Library relation instance

Name Type Country Price Tax
ty Harry Potter Book Framce 10 0.00
to Terminator DVD USA 40 0.08
t3 Harry Potter Book Framce 10 0.00
tq Armani Suit Clothing UK 500 0.05
ts Armani Slacks Clothing UK 280 0.00
tq Star Wars DvD UK 25 0.00
tr Terminator DVD USA 25 0.08
ts Prada Shoes Clothing France 500 0.05
ts Harry Potter Book France 10 0.05
tig Harry Potter Book France 10 0.00
ti Prada Shoes Clothing Framce 200 0.05

As we noticed in the previous two cases, these tuples which violate the semantic constraints but
don't violate the FD constraint, i.e., this Functional Dependency does not help us te find the tuples
that violate the sales rules in the library.

Let’s define a new type of rules to help us avoid these violations:

¢, ([Name, Type="Book", Country="France") — [Price, Tax =0])
@, {[Name, Type, Country="USA") — [Price, Tax])

This type of constraint is called Conditional Funetional Dependency which is FD but has some
constant values to help users in data cleaning phases.

The first CFD {,) prevents the user in the library system from viclating this rule: if the book
sells in France, then no tax rate is added. While as the second CFD (p,) means that in the USA
country, the name and the type of items define the price and the tax for them which prevent the
same item to have two different prices. These rules do not vielate the FD that the relation holds in,
but added some consistency and accuracy to the relation.

RELATED WORK

As the discovering of Functional dependencies take a lot of work from the researchers of the
database and data cleaning system, the approaches for discovering the FD are varied and have
different options and pruning phases.

As tight relation exists between FDs and CFDs, we can think that FDs discovery approaches
can apply to discover CFDs too. The authors (Fan ef al., 2009}, divide the discovering of CFD into
three methods .The first, referred to as CFDMiner, is based on techniques for mining closed item
sets and 1s used to discover constant CFDs, namely, CFDs with constant patterns only. The other
two algorithms are developed for discovering general CFDs,

The first algorithm, referred to as CTANE, is a levelwise algorithm that extends TANE, a
well-known algorithm for mining FDs. The other, referred to as FastCFD, is based on the depth first
approach used in FastFFD, a method for discovering FDs.

It leverages closed-item set miming to reduce search space. The authors demonstrate the
following. (a) CFDMiner can be multiple orders of magnitude faster than CTANE and FastCFD for
constant CFD discovery. (b) CTANE works well when a given sample relation is large, but it dees
not scale well with the arity of the relation. (¢) FastCFD is far more efficient than CTANE when the
arity of the relation is large.

288

Trends Applied Sei. Res., 7 (4): 285-302, 2012

CFD-MINE ALGORITHM

CFD-Mine 1s a level-wise search algorithm for mining the CFD Rules, that each Candidate
{element on the lattice) at level k is used to discover the results at level k+1. The approach uses
multi pruning phases to filter the discovered rules, finds a set of minimum CFDs which is
equivalent to another set of CFDs discovered by different. approaches.

CFD-Mine approach performs a level-wise search on the lattice for finding partitions to the
candidates and generating the CFDs between adjacent levels. Top-down search in the lattice starts
from singleton sets and proceeds downwards searching for bigger sets.

At level one, CFD-Mine starts from Singleton Candidates (i.e., single attributes set available
in the relation) and stores them in a variable C,. At level two, each element in C, is used to generate
Candidates of the form (x,x,) where, {x, x, € C,} and {x, # x,} and stores them in another variable
Cy.

After finding all the Candidates in both levels (one and two) and stores them in C, and C,
respectively, all the FDs available between these two levels are discovered and stored in variable

called F. Also, All the CFDs of the following form are discovered and stored in a variable CF:
¢ (g=xi, p=o)>(vi)

Where, xi is a single value from C, and vi is a single value from C added to xi to represent a
Candidate in C.,.
For instance, if there 1s a relationship between (B, AB), then the form of CFD is:

p:(g=B,p=e)(A)

At level three, the Candidate set available in C, is used to generate the third level of Candidates
and stores them in C,. After that, all FDs available between level two and level three are discovered
and added to the previous FDs stored in variable F and all CFDs of the following form is generated
and added again to the previous CFDs stored in CF:

@:(q=xi,p) > (Vi)

For instance, to find a relation between elements on the edge (AB, ABC), the forms of CFDs are
one of the following:

@:(@=A,p=B) 0, or
@:(q@=B,p=A) >0O),or
¢: (J[g=B, A), p=e) —(C)

Figure 2 shows CFD-Mine pseude code which is in Object Oriented Programming (OOF)
Language present the main class and this class calls five different methods (procedures)
which are: GingletoCalculatePartition, CalculatePartition, AprioriGen, ObtainCFDs and
PartitionMinimal Cover.,

In the following Sub-Sections we explain each of the above procedures and we illustrate how

CFD-Mine algorithm works.

Generate next level candidates: The AprioriGen procedure 1s used to generate all possible
Candidates at level k from the Candidates at level k-1. Figure 3 shows the AprioriGen procedure.

289

Trends Applied Sei. Res., 7 (4): 285-302, 2012

CFD-MINE Algorithm (r (U))
Input: A relationr (U) over U= {v..Vm}
Output: A set of FDs and CFDs overr (U).

{

Initialize variables step:

1. CF =g

2. G=U;

3. SingletonCalculatePartition (C1,1 (U));
Tteration step:

4 while |Ck| > 0 do

5 {

6. k=k+1;

7 AprioriGen (Cya);

8 CalculatePartition (Cy.,r (U));
9. CF U ObtainCFDs (Cy.1. Cy);
10. MinimalCover (CF);
1.}

12. return (CF):

}

Where,

CF - variable to store all CFDs discovered
during the algorithm progress.

G - variable to store singleton Candidates
attribute in relation.

Cy - variable to store all results comes from
calling the sub algorithms.

k=1 :variablepresentthe level wherethe
algorithm works on.

Fig. 2: CFD-Mine pseudo code

AprioriGen (Cy.1)

{

1. C.=a;

2. for each {y.z}C Cy.q, y#z do
3. x=yuz

4. if for each A€x_x\{A}€Cx then
3. Ci=CU{x};

6. return C;;

}

Where,

Z,¥y : Attribute set at level k.

X - The new value at level k+1.

Fig. 3: AprioriGen procedure

290

Trends Applied Sei. Res., 7 (4): £285-302, 2012

Computing partitions: Partitions definition: Two tuples t and u are equivalent with respect to
a given set X of attributes, if t (A) =u (A) for all Ain X . Any attribute set X partitions the tuples
of the relation into equivalence classes. We denote the equivalence class of a tuple t € r with
respectto agivenset X eR by (1) X, 1e.,, @) X ={uer | t (A) =u (A) for all A € X}. The set X = {{t)
X |t € r} of equivalence classes is a partition of r under X.

1L, is a collection of disjoint sets (equivalence classes) of tuples and each set has a unique value
for the attribute set X and the union of sets equals to the relation r. The rank |I1| (aka cardinality)
of a partition II is the number of equivalence classes in II.

Stripped partition definition: is a partition with equivalent classes of one element size and this
={{1, 3,
9, 10}, 42, 7} {8, 11}}, we will not mention it because we will use it as a default partitions, The

element is removed, for instance, the Stripped Partition of the Name Attribute set 1s II

Name

benefit of using stripped partition is to reduce the comparison space in finding CFDs.

Singleton calculate partition: procedure shown in Fig. 4 is used to find all equal tuples in the
attribute set that have the same value in the domain for the single attribute set only.

The partitions are not computed from scrateh (Lattice) for each attribute set. Instead, Fig. 5
shows the CalculatePartition procedure that is used to move through the lattice and compute a
partition as a product of the two previously computed partitions (in the previous level). The product,
of the two partitions II' and II", denoted by II' x II", is the least partitions that refines both II' and
1.

We compute the partitions Il for each X € R, directly from the database if the value of X = 1.
If X =2the partitions Il are computed as a product of partitions with respect to the two subsets
of X, Any two different subsets of size |X|-1 will do which is convenient. for the level-wise algorithm
since only the partitions from the previous level are needed.

SingletonCalculatePartition (C1, r (U))

{

1. i,j=@;

2. for eacht[i] € dom(attr[A]) do
3. for j=0 to Table. length

4. If (value [i] = value [])

3. thil=tlilvi;

6. break;

7. returnt[j];

}

Where,

t[il: The index number of the tuples.

attr[a]: The attribute set in the level.

value : Value domain availablein the tuple of
attribute, Dom (attr [A]).

t[jl: Array oflists to store the partitions.

Fig. 4: SingletonCalculatePartition algorithm

291

Trends Applied Sei. Res., 7 (4): £285-302, 2012

CalculatePartition (Ck, r (U))

[P

n, m=e;
for each (t[v], t[z])C Cy .t[y]+# t[z] do
for each part[n] € t[v]
for each part[m] € t[z]
t[x]=(part[n]-part[m])U(part[m]-part[n]):
break:
retwrn t[x];

-] O o W

Where,

n, m : Numeric values present the index to the
partitions to each Candidate.

part : Array of tuples, present the partitions.

Fig. 5. CaleulatePartition algorithm

Searching for rules: Now, we use the partitions found for each attribute set in each level stored
in C, to find the CFDs Rules.
The ObtainCFDs procedure shown in Fig. 6 1s used to generate the CFDs as in the following

steps:

Step 1:

Step 2:

Step 3:

Step 4:

ObtainCFDs procedure receives two complete levels and compares each element at level
C,., with each related element at level C, and check the candidate element at level C, ,
that is a portion of the candidate element at level C,, (i.e., C_,c C,). For instance, in
Fig. 1 the element (AC) is a portion of the element (ABC) at the next level

If the partitions of these elements are exactly equal (i.e., identical) then there 1s a FD
between them (nontrivial FD). For instance, in the previous Table the partition after
remove stripped partitions for Name and (Name, Type) candidates are:

Io,..={1,3,9,103, {27} {8,11}
... Type = {1. 3,9, 103, {2, 7}, {8, 11}

Which mean there exists a DD between them, FD: Name — Type

If the partitions of these elements are not exactly equal (.e., there is at least one partition
shared) then maybe there is a CFD exists. The IntersectPartitions procedure shown in
Fig. 71is used to find the same equivalence classes (Intersect Partitions) that are equal in
both elements

CreateCFD procedure shown in Fig. 8, receives two Candidates and the shared partitions
between them and produces CFD rule in this manner; it 1s try to finds an element in the
LHS candidate that contains the same Shared partition found by IntersectPartitions
procedure; if it is found, then it is a condition partition or constant, if it is not then the
element is variable and its values are from the domain of its attribute. This operation is
repeated for the RHS. This step reduces the number of CFDs discovered by giving a direct
CFD after merging a lot of CFDs Rules

Pruning the discovered CFDs: Our approach contains several pruning phases that are used to

reduce the number of CFDs to be checked, these phases have good effects in improving the

performance of the algorithm.

292

Trends Applied Sei. Res., 7 (4): 285-302, 2012

ObtainCFDs (Ck, Ck-1)

{

1. F=go;

2. for each x in Ck -1

3. for each vi e U —x+

4. if (TIx| = |TIxvi])

5. F=FU((FD:[x— vi])

6. else

7. Qx= IntersectPartitions (X, xvi);

s. if (Ox =)

9. break;

10. else

11. CreateCFD (Qx, x, vi);

12. retmn Qx;

¥

Where,

X+ : The closure of the element x, i.e. the
element that x contains it.

Qx : Variable to store the share partition|
between two elements in two levels.

Fig. 6: ObtainCFDs procedure

IntersectPartitions (x, xvi)

{

1. nm=e:

2. for each part[n] € x
3 for each part[m] € xvi

4 if((part[n] = part[m])& &(part size =r))
5. Qx = Qx U part[m] ;

6. break;

7. retwrn Qx.

¥

1, m : Numeric values present the index to
the partitions in each Candidate.

part . Array of tuples, which represent the
partitions.

part_size: Number of tuples in each group.

T : Threshold value.

Fig. 7: Intersect Partitions procedure

Create CFD (£2x, x, vi)

1.for eachh € x do

2.if @x C h then

3. g=qUk;

4.else

5. p=pUk;

6. if Qx C vi then

7. CF=CF U o=[q = value of dom (x), p] — [vi
= value of dom (vi)];

8. else

9. CF=CF U o= [q = value of dom (x), p] — [vi];
10. retmn CF;

¥

Where,

q : variable to store the Conditional Attributes.
p : variable to store the Variable Attributes.

Fig. 8: CreateCFD procedure

293

Trends Applied Sei. Res., 7 (4): 285-302, 2012

Stripped partitions: As we mentioned early, the partition with one element size is removed from

the search space for the following reasons:

* Reduce the search space for finding the CFDs

* Prevent CFD comes from single tuple to appear in the final rules and this means that there is
no CFD Rule that has constant values in all of its attributes of the rules which means that the
static rules are pruned

Merging similar CFDs: In our approach, we added the idea of merging CFDs rules based on the
similarities between their attributes. This idea is presented in the third inference rules in
(Fan et al., 2009). The idea of merging rules based on finding the attributes have the same value
and make it Condition.

Minimal cover for CFDs: Before exploring the modified algorithm for finding the minimum CFD,
we will study the inference axioms for CFD given in Fig. 9 and their relations with CFD-Mine.

FDI1: Extends Armstrong’s axioms of Reflexivity, because CFD-Mine algorithm finds the CFD
between two adjacent levels and because it discovers the nontrivial CFD, then this inference rule
doesn’t have any effect in our algorithm.

Now, as an application of consistency and implication analyses of CFDs, we present a modified
algorithm for computing a minimal cover MCF of a set CF of CFDs based on the Intersect Partitions
between the candidates which produce the Rules that can be reduced and eliminated from the CF
set.

The cover MCF is equivalent to CF but does not contain redundancies and thus is often smaller
than Y. Since the costs of checking and repairing CFDs are dominated by the size of the CFDs to
be checked along with the size of the relational data, a non-redundant and smaller MCF typically
leads to less validating and repairing costs. Thus finding a minimal cover of input CFDs serves as

an optimization strategy for data cleaning.

A minimal cover MCF of a set S of CFDs 1s a set of CFDs such that:

« Kach CFD in MCF is of the form (R: X — A, tp) as mentioned earlier

« MCF=CF

+ No proper subset of MCF implies MCF and

« Foreachp=(R: X~ A, tp)in MCF, There exists no ¢ = (R: X — A, tp (XuA)) in MCF such that
X < X. Intuitively, MCF contains no redundant CFDs, attributes or patterns

Now, if we applied the inference axioms for finding the minimal cover set of CFDs, we will see
that the FID1, doesn’'t have any effect on CFD-Mine, because already the finds the nontrivial CFDs
between adjacent levels.

About the second axiom FDZ, maybe there is an equivalence set of attributes between the
discovered CFDs and as proposed by Yao ef al. (2002) the equivalence rules are removed and then
the second one will be removed from the set of the discovered CFD rules.

While as the third axiom FD3, will remove any variable value from the LHS of the CFD rules;
this will make the discovered rules have only constant attributes on the RHS.

294

Trends Applied Sei. Res., 7 (4): £285-302, 2012

FDL: A€ X, then (R: X — A tp), where tp|Ar] = ty[Ag] = ‘2’ for some ‘@’
€ dom(4), or both are equal toa *_".

FD2: I (1) (R: X = Ajgyti) such that t;[X] = t;[X] for all 4,7 € [LK], (2) (R:
[All"'ﬂAk] - Bstﬁ) and TMOreover, (3) (tl[Allﬂ"'ltk[Ak]) j tp[All"'ﬂAk]i
then (R: X — B,ty), where t;[X] = t1[X] and ty[B] = t,(B].

FD3: I (R:[B,X] - Atp), tp|B] =", and tp[4] is a constant, then (R: X —
4, t;), where t;[X U{A]] =tp[X u{4]}].

D& I (1)Er (R: [XB - At) for i € [LK, (2) dom(B} =
{by-. By b1y b }y and (Z, B = by) is not consistent except for { € [1, 4],
and (3) for 4, € [L, k], t:[X] =1;{X], and t;(B] = by, then T b1 (R: [X, B] =
Aytp) where tp[B] ="' and £5[X] = 11[X].

Fig. 9: Inference rules for CFDs

And finally the fourth axiom FD4 will cause merging similar CFDs that have the same RHS
and LHS and the idea of the merge illustrated above.

After applying these axioms on a set of CFDs and applying the Minimum Cover algorithm
proposed by Fan et al. (2009), we will have a minimum set of CFDs.

We have a mixed up all the above axioms and Minimum Cover algorithm, because our
approach mainly depends on the intersect partitions between the Candidates; we will use the idea

of this partitions for finding the minimum set MCF of CFDs.

Partition minimal cover: Procedure shown in Fig. 10 works as follow: the procedure selects all
the CFDs that have the same intersect partitions and then chooses between them the CFDs that
have the same RHS and have some intersect LHS attributes between them, after that the
algorithm applies the inference axioms which will produce the Minimum set of CFDs,

Illustrative case study: This section contains a real case taken from free database available on
the internet to explain how CFD-Mine algorithm works.

A database called Balloen dataset from UCI (Machine Learning Repository) (Asuncion and
Newman, 2007). Balloon dataset given in Table 2 consists of a set of trousers with different
characteristics and has 5 attributes and 20 tuples.

First of all, AprioriGen algerithm takes the singleton elements (candidates) and
SingletonCalculatePartition procedure finds all equivalence classes to the singleton attributes stored
in C,= {Color, Size, Act, Age, inflated} as shown in Table 3.

At level two the AprioriGen uses the candidates available in C| to finds the candidates in C, and
the CalculatePartition finds all equivalence classes for the candidates attribute set stored in C, and
these steps repeated until the last level in the dataset as shown in Table 4.

Next step is creating the rules and this step follows the four steps shown early, if there is an
element in second level such as (Act, Age) and its partitions are:

I,...=i{1,6, 11,16}, {2,7,12,17},{3,8,13,18},{4, 5,9,10, 14,15, 19, 20} }
And one of its related elements in the third level 1s {Act, Age, Inflated) and its partitions are:
IT posgemtaes = £41, 6, 11, 163,42, 7,12, 17}, {3,8,13,18}, {4, 5,9, 10, 14, 15,19, 203}

295

Trends Applied Sei. Res., 7 (4): £285-302, 2012

PartitionMinimalCover (CF)

SRR

for each i=1 to CF_size
for each j—2 to CF_size
If ((£2x CFDJ[i]= £2x CFD[])& &
(RHS CFD[i]= RHS CFD[])& &
(LHS CFD[j] = LHS CFDI[i]))

MCF=MCF U IR (CFD):
xetwmn MCEF;

Fig. 10: PartitionMinimalCover procedure

Table 2: Balloon relation instance

t# Colar Size Act. Age Inflated
ty Yellow Small Stretch Adult T
te Yellow Small Stretch Child T
t; Yellow Small Dip Adult T
ty Yellow Small Dip Child F
ts Yellow Small Dip Child F
ts Yellow Large Stretch Adult T
tr Yellow Large Stretch Child T
ts Yellow Large Dip Adult T
ts Yellow Large Dip Child F
tio Yellow Large Dip Child F
ti Purple Small Stretch Adult T
tia Purple Small Stretch Child T
t1s Purple Small Dip Adult T
tos Purple Small Dip Child F
tis Purple Small Dip Child F
tig Purple Large Stretch Adult T
tir Purple Large Stretch Child T
tis Purple Large Dip Adult T
tig Purple Large Dip Child F
too Purple Large Dip Child F
Table 3: Partitions of the Candidates in C,

Attr name Partitions Cardinality
Moorer = {{1,2,3,4,5,6,7,8,8,10}, {11,12,13,14,15,16,17,18,15.20}}. [T oror | =2
I g = {{1,2,3,4,5,11,12,13,14,15}, {6,7,8,9,10,16,17,18,15.20}}. [TMgee | =2
I = {{1,2,6,7,11,12,16,17}, {3,4,5,8,9,10,13,14,15,18,15.20}}. [Ty | =2
0 ,.= {{1,3,6,8,11,13,16,18}, {2,4,5,7,9,10,12,14,15,17,19,20}}. M | =2
I jpgaea= {{1,2,3,6,7,8,11,12,13,16,17,18}, {4,5,9,10,14,15,19,20}}. |TT fpnaced | =2

And these two groups of partitions are identical so there is a FD between them and the

discovered FD 1s:

¢« FD =(Act, Age — Inflated)

Now If we have two candidates (Act, Inflated) and (Act, Age, Inflated) and there is a shared
partition (Ox) between them Ox ={{3, 8, 13, 18}, {4, 5, 9, 10, 14, 15, 19, 20}} which is discovered

296

Trends Applied Sei. Res., 7 (4): 285-302, 2012

Table 4: Partitions of the Candidates in C,

Attr name Partitions Cardinality

T ootor, size = {{1,2,3,4,5},{6,7,8,9,10}, {11,12,13,14,15},{16,17,18,15.20}}. | T gtor gize | = 4
TT Gator ot = {1,2,6,7}.3,4,5,8,9,10}, {11,12,16,17},{13,14,15,18,15.20}}. | Tonor et | =4
TT Gotor e = {{1,3,6,8},{2,4,5,7,9,10}, {11,13,16,18},{12,14,15,17,19,20}}. | Tonor age | =4
Tlotor nnaea= {{1,2,3,6,7,8}.{5,9,10}, {11,12,13,16,17,18},{14,15,19,20}}. | Tcomr mfamal =4
IT gize, ot = {1,2,11,12},43,4,5,13,14,15}, {6,7,16,17},{8,5,10,18,15,20}}. | TT gige, o | =4
T ge age= {{1,3,11,18},{2,4,5,12,14,15}, {6,8,16,18},{7,9,10,17,19,20}}. [Tl g age | =4
1T gize, 1natea= {{1,2,3,11,12,13},{4,5,14,15}, {6,7,8,16,17,18},{9,10,19,20}}. |11 e, tnnaeal =4
IT act, age = {{1,6,11,16},{2,7,12,17},{3,8,13,18}, {4,5,9,10,14,15,19,20}}. [T gt e | =4
1T act, 1anated= {{1,2,6,7,11,12,18,17},{3,8,13,18}, {4,5,9,10,14,15,19,20}}. |1 gt tngiaeal =3

by IntersectPartitions procedure, Then CreateCFD procedure checks the element in the LHS (Act)
and (Inflated) to see which cne of them has the same partition from its partitions, in this case {(Act)
has the same common partition but (Inflated) dees not, then the (Act) is the condition portion and
the {(Inflated) 1s the variable portion and we repeat this operation on the RHS but we check only
the element that is not in the LHS (i.e., Age) and we find that it deesn’t have the same partition
soit’'s a variable portion:

@ (Act = DIF, Inflated) — (Age)
Suppose CreateCFD procedure creates two CFD rules such as:

+ @l: (Act ="STRETCH", Color ="YALLOW") — (Inflated ="T"), Produced by Qx = {4, 5, 9, 10}
partition

+ 02 (Act ="STRETCH", Color ="PRUPLE") — (Inflated ="T"), produced by Qx = {14, 15, 19, 20}
partition

In our approach you will not see it because we merge it into a single CFD using Merging Similar
CFDs pruning algorithm.

@ (Act = STRETCH, Color) — (Inflated = T)

EXPERIMENTAL EVALUATION

The utility of the approach: We mentioned earlier that the FD used mainly for schema design
purpose and CFD found for cleaning the data relations from erronecus entering, but we can't
ignore the important role that the FD approaches have been playing in data cleaning too, so as our
approach discovers both minimum set of Conditional Functional Dependencies which may differ
from another set of CFD discovered by ancther approach but they are equivalent and set of
Functional Dependences, we can-in future-design a complete system for cleaning the relation based
on both FID and CFD .

Almost all of the relations located on the Asuncion and Newman (2007) have inconsistencies;
this leads the other approaches for discovering the FD to use what we called Approximate
Functional dependency (AFD) which is Functional dependency that almost holds. Our approach
sometimes can’t find any Funectional Dependences in the relation, because the relation has some
errors.

297

Trends Applied Sei. Res., 7 (4): 285-302, 2012

Let us think differently. If we apply the discovering of CFD Rules and then modify the data
relation according to these Rules, the relation will not have any inconsistencies; this manner will
produce a set of real Functional Dependences FD, not Approximate Functional Dependencies
(AFD).

So, CFD-Mine function for cleaning data will be finding the most rules agreed on the relation
and then modify the spurious tuples which disagree with the discovered rules and help the data
entries to insert correct entities which agree with the rules later on.

Accuracy of discovered rules: Golab et al. (2008) present a definition to the problem of optimal
pattern tableau generation (CFD) based on natural criteria, it might seem that a good tableau
should choose patterns to maximize the number of tuples, they think that a good tableau should
apply to at least some minimal subset of the data and should allow some of the tuples to cause
violation. They present two main variables called support (tuples should match) and confidence
{tuples should viclate).

Because our approach discovers all possible CFDs, this may seem conflict to what the authors
(Golab et al., 2008) come in, but we deal with this criterion in a different manner; we put a variable
called threshold r which presents the percentage of the tuples that the discovered CFD rules
covered, this value has two main benefits:

+ [t lets the algorithm produce only the rules that have this value and abaove

* [t reduces the search time for finding the Rules

If the user identifies threshold r, then the application program will filter the discovered rules
according to this threshold, all the rules above the value of threshold are support and all the rules
under the value of threshold are confidence.

Present. algorithm for finding the CFDs based on finding the intersect partitions between the
Candidates and each partition has its own cardinality (the number of tuples in that partition) and
because we need to increase the speed of the search for finding CFDs, we identify an equation to
connect the percentage of the discovered CFDs with the cardinality of the partitions.

For instance, if we have a relation with 400 tuples and we need to find only the CFDs that
agree only on 20% and above of the relation dataset, so we set the value of the threshold on this

equation:
g = (The ratio r<No. of tuples in relation t)/100
g = (20x400)/100 = 80 (Tuple/Partition)

Now, the value of g means that only partitions that have the cardinality equal 80 and above
are added to the create rules phase while the other partitions are removed, so they will not be
included in the search space.

Suppose that we want to find only the CFDs that covered 40% of the relation, the value of the
threshold r = 40. The number of the tuples in the relation t = 20:

g = (r<t)/100 = (40%20)/100 = &

298

Trends Applied Sei. Res., 7 (4): 285-302, 2012

So, only the partitions that have 8 and above number of tuples in the partition are included in
the phase of producing CFDs; if there are rules covering this percentage.
For instance:

e M,,={1,26 711,12, 16,17, {3, 4, 5,8, 9, 10, 13, 14, 15, 18, 19, 20}

o T me =41, 2,6, 7,11, 12, 16, 173, {3, 8, 13, 18}, {4, 5, 9, 10, 14, 15, 19, 20}
* Intersect Partition Qx={1,2,6,7,11,12,16,17}

¢« Cardinality of Qx =1 Qx | =8

The discovered CFD is:
+ @ (Act = “STRETCH?") — (Inflated="T")

Now any other tuples between the candidates (Act) and (Act, Inflated) don't agree on one of
these rules are Confidence, while as any tuples agree on these rules are Support.

If you need to discover the FDs that the dataset set holds in, you have to set the value of the
threshold r =0, to prevent the algorithm delete any partition with any size, because the mechanism
of finding FD as TANE propose is to compare the partition set of two candidate, if its identical then
there 1s a functional dependency between them.

Scalability experiments

Parameters: CFD-MINE was applied on a datasets cbtained from the UCI Machine Learning
Repository (Asuncion and Newman, 2007). Our experiments were run using a Dual T2350 INTEL
Processor 1.86 Ghz (1.86 Ghz) with 2 GB of memory; we used the Adult dataset and
Agaricus-lepiota dataset and varied the parameter of interest to test its effect on the discovery
running time.

Scalability on the number of tuples: For the purpose of study the behavior of our algorithm
when increasing the number of tuples we examined by fixing the number of attribute a =8 and
giving three different values to the threshold r, the values are r =1, 2 and 3 and starting the
number of tuples fromt=1ktot=8k.

When increasing the number of tuples, as shown in Fig. 11 and 12, the algorithm behave semi
Linearly, To explain this phenomena, we mentioned that our algorithm mainly divided into two
main complexity issues,

The first one i1s finding the partition of the candidates and because we didn’t change the
number of candidates in all of the cases (2" = 512 candidates), then there is no added time to find
it, but the little increase of time is because finding more number of partition to each candidate
which mean more time for find the intersect partitions and more time to generate the CFDs rules.

And the second one 1s the attribute size, because the attribute size of the Adult dataset 1s larger
than the attribute size of the agaricus-lepiota and because we deal with the data as String data
type, then when the size of String increased the time for merging and separation and other
operations on the string done, the time is also increased. So, the time for the same number of tuples
and attribute for Adult data set as shown in Fig. 11 is larger than the time for agaricus-lepiota as
shown in the Fig. 12 but the algorithm still behaves linearly.

299

Time (sec)

Trends Applied Sei. Res., 7 (4): £285-302, 2012

—— =1
—a— =2
—A =3

4
of tuples X 1000

Fig. 11: Scalability per tuples (Adult)

6007

500

Time (sec)

Fig.

Time (sec)

W &
(=3 (=3
S (=}

1 1

2 4 6
of tuples X 1000

12: Scalability per tuples (Agaricus-lepiota)

14000 =1

—a—r=2
—A—r1=3

12000 -
10000 -
8000
6000
4000 4
2000 1

0

o -
~
=N

0 8 10 12

of attributes

Fig. 13: Scalability per attributes (Adult)

Scalability on the number of attributes: For the purpose of study the behavior of our
algorithm when increasing the number of attributes we examined by fixing the number of tuples
different values to the threshold r, the values are r =1, 2 and 3 and

t = 1 k and giving three

starting the number of attributes from a =5 to a = 15,

When increasing the number of attributes, as shown Fig. 13 and 14, the algorithm behaves
Exponentially, to explain this phenomena, we explain that the time that the algorithm need it to
find the partition for dataset with 3 attribute (2* = 8 candidates) is much less than the time needed
to caleulate the partitions for dataset with 15 attributes (2!° = 32768 candidates).

300

Trends Applied Sei. Res., 7 (4): £285-302, 2012

30000
25000
20000

15000

Time (sec)

10000

5000 A

0

0
o~
=N
oo

0 10 12 14 16

of attributes

Fig. 14: Scalability per attributes (Agaricus-lepiota)

These results are identical to that of TANE, because the idea of calculating the partition
presented in TANE and TANE is one of the most efficient approaches for finding the traditional
funectional dependencies.

If we assume that we deal directly with existing partitions and we want to only discover the
rules the time that will be taken is very small, but the time for finding the partitions is large, so,
when increasing the number of attributes the number of candidates increases too.

CONCLUSIONS

In this study we present a new approach to the discovery of both Functional and Conditional
Functional Dependencies. The major innovations is a novel way of discovering all possible Rules
and determining minimal set on these Rules and use the modified inference Axioms for CFDs, The
idea is to maintain information about which rows agree on a set of attributes. Formally, the
approach can be described using equivalence classes and partitions. A major advantage of the use
of partitions is that it allows efficient discovery of conditional dependencies and traditional
dependencies.

The algorithm is based on the levelwise search algorithm that has been used in many data
mining applications. It starts from dependencies with a small left-hand side, i.e., from the ones that
are not very likely to hold. The algorithm then works towards larger and larger dependencies, until
the minimal dependencies that hold are found.

The worst case time complexity of the algorithm with respect to the number of attributes is
exponential, but this is inevitable since the number of minimal dependencies can be exponential
in the number of attributes. However, if the number of rows increases, the set of dependencies
remains the same, the time increases only linearly in the number of rows.

The linearity makes the algorithm especially suitable for relations with large number of rows.
Experimental results show that the algorithmme effective in practice and that it makes the discovery
of functional and conditional functional dependencies feasible for relations with even hundreds of
thousands of rows.

REFERENCES
Al-Nabhan, M., 8. Yousef and J. Al-Saraireh, 2006. TCP protocol and red gateway supporting the
ob of multimedia transmission over wireless networks. Inform. Technol. J., 5: 689-8697.

Arenas, M., L.E. Bertossi and J. Chomicki, 2003, Consistent query answers in inconsistent
databases. Theory Pract. Logic Progra., 3: 393-424,

301

Trends Applied Sei. Res., 7 (4): 285-302, 2012

Asuncion, A. and D. Newman, 2007. UCI machine learning repository of machine learning
databases. University of California, School of Information and Computer Science, Irvine, CA,
http:/fwww.ics. uct.edu/~mlearn/MLEepository. html.

Chiang, F. and R. Miller, 2008, Discovering data quality rules. Proceedings of the VLDB
Endowment, in International Conference on Very Large Data Bases, August, 2008, University
of Toronto, Toronto, Canada, pp: 1166-1177.

English, L., 2000. Plain English on data quality: Information quality management: The next
frontier// DM review magazine. Prieiga Internet.

Fan, W., F. Geerts, L. Lakshmanan and M. Xiong, 2009. Ihiscovering conditional funectional
dependencies. Proceedings of the IEEE 25th International Conference on Data Engineering,
March 29-April 2, 2009, Shanghai, pp: 1231-1234.

Golab, L., H.J. Karloff, F. Korn, D. Srivastava and B. Yu, 2008, On generating near-optimal
tableaux for conditional functional dependencies. PVLDEB, 1: 376-390.

Mannila, H. and H. Toivonen, 1997. Levelwise search and borders of thecries in knowledge
discovery. Data Min. Knowl. Discovery, 1: 241-258,

Pramada, J., J.V. Rao and D.V.S.E. Anil Kumar, 2012, Characterization of boolean valued star and
mega lattice functions. Asian J. Algebra, 5: 1-10.

Q1, J.dJ. and L. Wei, 2008, Attribute reduction in consistent decision formal context. Inform.
Technoel. J., 7: 170-174.

Rahm, E. and H.H. Do, 2000, Data cleaning: Problems and current approaches IEEE Data Eng.
Bull., 23: 1-11.

Raoul, M. and N. Lhouari, 2008, Conditional functional dependencies discovery. Research Report
LIMOS/RR-08-13, http:/Mlimos.isima. fr/IMG/pdffRR-08-135 pdf

Renuga, K. and S. Sadasivam, 2009. Data discovery in grid using content based searching
technique. Inform. Technol. ., 8 71-76.

Sagiroglu, O. and M. Ozturan, 2006, Implementation difficulties of hospital information systems.
Inform. Technol. J., 5: 892-899,

Sahai, A., MM. Rahman and R.F. Jaju, 2005. Using meta-analysis for data enrichment-optimal
families of estimation strategies. J. Applied Sei., 5: 1575-1581,

Sharma, 5., A. Tiwari, S. Sharma and K.R. Pardasani, 2007, Design of algorithm for frequent
pattern discovery using lattice approach. Asian J. Inform. Manage., 1: 11-18,

Shilakes, C.C. and J. Tylman, 1998 Enterprise Information Portals. Merrill Lynch Inec,,
New York, USA.

Thakur, R.S.,, R.C. Jain and K.R. Pardasani, 2007. Fast algorithm for mining multi-level
association rules in large databases. Asian J. Inform. Manage., 1: 19-26.

Wang, X.L., Z. Jing and H.Z. Yang, 2011. Service selection constraint model and optimization
algorithm for web service composition. Inform. Technol. J., 10: 1024-1030.

Wei, M., A H. Sung and M.E. Cather, 2007, FROut: A novel approach to linking large databases.
Inform. Technol. J., 6: 37-47.

Yao, H., H.J. Hamilton and C.J. Butz, 2002, FD) Mine: Discovering functional dependencies in a
database using equivalences. Proceedings of the JEEE International Conference on Data
Mining, December 9-12, 2002, University of Saskatchewan, Canda, pp: 729-732-732,

302

	Trends in Applied Sciences Research.pdf
	Page 1

