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ABSTRACT

In this present study, we applied new applications of direct algebraic methoed to Eckhaus
equation, the balance numbers of which are not positive integers. Then new types of complex
solutions are obtained to the Kekhaus equation.
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INTRODUCTION

Seeking the complex and exact solutions of nonlinear partial differential equations plays an
important role in nonlinear problems. When we want to understand the physical mechanism of
phenomena in nature, described by nonlinear evolution equations, exact sclutions for the nonlinear
evolution equations have to be explored. Recently many new approaches to obtain the exact
solutions of nonlinear differential equations have been proposed. When we want to understand the
physical mechanism of phenomena in nature, described by nonlinear evolution equations, exact
solutions for the nonlinear eveolution equations have to be explored. Thus, the methods for deriving
exact solutions for the governing equations have to be developed. Recently, many powerful methods
have been established and improved. Among these methods, we cite the homogenecus balance
method (Wang, 1995; Wang ef al., 1996), the tanh-function method (Parkes and Duffy, 1996), the
extended tanh-function method (Fan, 2000), the Jacobi elliptic funection expansion method
{Lau et al., 2001; Fu et al., 2003), the auxiliary equation method (Sirendaorej, 2004) and so on
{(Salekdeh eif al., 2012; Pramada et al., 2012; Rokrok et al., 2012; Iwueze and Ohakwe, 2011;
Ahmad et al., 2011; Zainodin et al, 2011). Recently, the direct algebraic method and symbolic
computation have been suggested to obtain the exact complex solutions of nonlinear partial
differential equations {(Kufre et al., 2011; Jabbari and Solookinejad, 2011; Kazemi et al., 2011;
Maina ef al., 2011; Ferrari et al., 2000; Zhang, 2009),

DESCRIPTION OF DIRECT ALGEBRAIC METHOD

For a given partial differential equation:
G (U, u, U, Uy, Uy, ) (1
Our methed mainly consists of four steps:
Step 1: We seek complex solutions of Eq. 1 as the following form:

u=u(f), £=ik(x-ct) 2)
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where, k and ¢ are real constants. Under the transformation (2), Kq. 1 becomes an ordinary
differential equation:

N (u, ikeu', -ikeu', -k™u",..) (3)
Where:

, du
uw=—
dg

Step 2: We assume that the solution of Eq. 3 1s of the form:
u@= Tar @) 4

where, a, =1, 2,..., n) are real constants to be determined later. F'(£) expresses the solution of the
auxiliary crdinary differential equation:

F(§)=b+F* (£) )

Eqution 5 admits the following solutions:

—J-btanh('-b&),  b=0
F(&)=
—J-beothi-b&),  b=0

. Votanbz). b0 ()
“JoeotybE),  bso0
1
F&)=——, b=0
©=-7

Integer n in (4) can be determined by considering homogeneous balance [3] between the
nonlinear terms and the highest derivatives of u(f) in EKq. 3.

Step 3: Substituting (4) into (3) with (5), then the left hand side of Eq. 3 1s converted into a
polynoemial in F(£), equating each coefficient of the polynomial to zere yields a set of algebraic
equations for a, k, c.

Step 4: Solving the algebraic equations obtained in step 3 and substituting the results into (4),
then we obtain the exact traveling wave solutions for Eq. 1.

APPLICATION TO ECKHAUS EQUATION
The Eckhaus equation reads:

i®+® _+2(|OHOHDD =0, OR-C (7
We may choose the following complex travelling wave transformation:

@ = u(E) ™M, £ =ik (x-2at) (8)
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where, o, f are constants to be determined later. Using the complex traveling wave solutions (8)

we have the nonlinear ordinary differential equation:
(ip-e™) u-2kee(i+1) u'-ku"+iku'u>u’ = 0 (%)
Considering the homogeneous balance between u® and u" in Eq. 9, we required that bm =

m+2=m = 1/2. It should be noticed that m is not a positive integer. However, we may still choose

the solution of Kq. 7 in the form:

1
N (10)
So:
1 3
u’;A{bF7+Fﬂ (11)
3 1 5
u”iﬁ{sz? + 2bF2+3F2} (12)
1 5
¢2¢'=%A3{bF1+F1} (13)
Substituting Eq. 10-13 into Kq. 9, we obtain:
4 ez D2
A+ 2ikA° - K =0
4
2kAb+if - o %be: 0
By solving equation above we obtain:
Casel: A, :%(ﬂl), o =t iB—%kaI{Eb (14
Case2: A, = “‘jk G+D), o=+ iB—%ka + 3D (15)

From Eq. 6, 10, 14 and 15, we obtain the complex travelling wave solutions of Eq. 7 as follows:

Case 1: For:

A =YKdy - i"iﬁ—lkbz Kb
2 2
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we obtain:

U, = g(i + 1){J_b tanth(v—bik(x T 2, {is - %kbg + kgbt))}z

where, b<0 and k is an arbitrary real constant.
Hence:

1
— B HeN L 2 i b+
D, “zk(ﬂl){\/b tanh(v_bik(x T 2‘/1&%1&2 +k2bt))} S

And:

u, = ‘/;_k i+ 1){—4—_1) coth(~/~bik(x ¥ 2, /i[} —%kbE + k?bt))T

1
—_ E i+, 1—l 2k Moz 4
®, =Y k(i+1){—«f—bcoth(\/—bik(x;2‘/iﬁ—%kb2+k2bt))} A L

2

where, b<0 and k is an arbitrary real constant.:

1

u, = %(H D [J‘E tan(vbik(x T 21’iﬁ* %kbz + kzbt))}2

1
_ 7 ice fip- Lt tx o
®3=V2k (i+1){«/Etan(s/5ik(x;2‘}iﬁ—%kbz+k2bt))} A

where, b>0 and k 1s an arbitrary real constant.:

v 1
= B
u, = 2k (i+1){—«/€cot(~f€ik(x¢2 iﬁ_%kngrkgbt))}
v 1
- z HEN | L 2t
D, = zk (i+1){— b cot{x/bik(x 7 2 iﬁ—%kb2+k2bt))} e(W "

where, b>0 and k 1s an arbitrary real constant.:

u Jokd+1)
© 207 24iBY)
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Forb=0.
Case 2: For:

N =V—23k G+1) oyt /i[}—%kbz £ 3K
we obtain:

u == ‘23k {+1) {—J—_b tanh(«/—bik(x T 2 ’i[} - %kbz + 3k2bt))}2

where, b<0 and k 1s an arbitrary real constant.
Hence:

v 1
- 2 iex fip-Lent 43
D, = 23k (i+1)[—sf—bta1ﬂ1(sf—bik(x¢2 iﬁ—%kb2+3kzbt))} o s T acuam

And:

u, =Y ’231‘ Gr 1){J_b coth(v-bik(x ¥ 2, /iﬁ %kbz + 3181;0)}2

v 1
- 2 iex fip-Lend s3ktous
@, = 23k (i+1){— b coth(v/~bik(x ¥ 2 iﬁ—%kb2+3k2bt))} R ) PR

where, b<0 and k is an arbitrary real constant.:

u, = ’231‘ G+ 1){\/6 tan(v/bik(x F 2‘,1& %kbz + 3k2bt))T

1
V- 7 ik fin- Lot ant
o, =YK (i+1){Jt_)tan(\/gik(x¢2‘}iﬁ—%kb2+3k2bt))} R

2

where, b>0 and k 1s an arbitrary real constant.:

u, =" ’231‘ drl) [JE cot(v/bik(x ¥ 2, ,iﬁ %kbz + 3k2bt)):|2

1
-\}— 51i1—1—1+2x+
o, =YK (i+1)[—J560t(\/5ik(x¢2"iﬁ—%kb2+3k2bt))} I

2
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where, b>0 and k 1s an arbitrary real constant.:

R T
T 20k 32RO+ 10
Forb=0.
CONCLUSION

The application of direct algebraic method was still limited to those equations the balance
numbers of which are positive integers. In this study, we explore a new application of the direct
algebraic method and obtain new types of complex wave solutions to the Eckhaus equation.
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