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ABSTRACT

In this study, the behavior of a second-order dynamical system around its equilibrium peint was
analyzed based on the behavior of some appropriate equipotential curves which were considered
around the same equilibrium point. In fact two sets of equipotential curves were considered so that
a set of the equipotential curves had a role as the upper band of the system trajectory and another
set played a role as the lower band. It was shown that stability of the system around its equilibrium
point can be assessed using the behavior of these two set of equipotential curves. It was shown that
asymptotically stability and instability analysis of the system only need the analysis of the upper
band set of the equipotential curves but oscillation behavior analysis of the system need to analyze
both the lower band set of the equipotential curves and the upper band set. Alsc as was shown the
proposed method 1s a mathematical method that can even detect a stable limit cycle appearing in
the oscillation systems and furthermore the method has many applications such as designing of

oscillators that were presented.
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INTRODUCTION

The stability analysis of a nonlinear system 1s very important and difficult problem. In fact,
there are not any assumptions to start the stability analysis of a nonlinear system. A very simple
nonlinear system can be unstable while a very complex nonlinear system can be stable. When a
system is designed, the first important problem is to guarantee the system stability. The
nonlinearity of a system results many various behaviors that makes impossibility to classify the
nonlinear systems in distinguished categories and this makes very difficult to analyze the stability
of a nonlinear system. For this reason, researches on the stability analysis of a nonlinear system
have been always interesting. To days, new methods for stability analysis of a nonlinear
system are very appealing and necessary especially for system designers (Vidyasagar, 1993;
Thomsen, 2003).

There are two classic methods which are essentially used to analyze the stability of a nonlinear
system (Vidyasagar, 1993; Doyle ef al., 1992). The first method is stability analysis using energy
funetion and the second method i1s based on the linearization the system around its equilibrium
point. Sometimes the first method presented by Lyapunov is called “Direct Method” and the second
method is called “Indirect Method”. The complexity of the first method is to find the appropriate
energy functions to assess the stability of a nonlinear system. The second method has two major
weaknesses. Firstly, if the eigenvalues of the coefficient matrix in the linear system resulted of
linearization have real parts that are equal zero, the original nonlinear system may be stable or
instable around the equilibrium point. Secondly, the method can only assess stability as the form

of local stability around the equilibrium point (Vidyasagar, 1993).
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Also two basic methods are essentially used to analyze the behavior of limit cycles appearing
in nonlinear system (Vidyasagar, 1993; Doyvle et al., 1992). The first method is to draw the
trajectories of the system using the softwares such as MATLAB in order to detect the limit cycles
of the system. It is clear that the limit cycles detected by this approach can be recognized as stable,
unstable or semi-stable (Vidyasagar, 1993; Doyle ef al., 1992). The second method 1s based on the
linearization of the system around its equilibrium point or points. The second method has two major
weaknesses. Firstly, the equilibrium point of the system, which the system is linearized around it,
must be on the limit cycle or in a small neighborhood of it otherwise the method can not detect the
real behavior of the nonlinear system. Secondly, the method can only assess the behavior of the
system around the limit eyele as the form of point to point if and only if these points all locate on
the limit cycle (Vidyasagar, 1993). There are some new researches done in recent years that present
some mathematical methods to analyze the stability and behavior of some special nonlinear systems
{(Nan and Weber, 2010; Mann and Shiller, 2006; Benkler et al., 20068; Marro and Zattoni, 2002;
Ntogramatzidis ef al., 2007; Martinez et al., 2003; Sheheitli and Rand, 2011; Thomsen, 2003).
These methods can not be applied for analyzing of general second or higher order nonlinear
systems.

The proposed method mentioned in this paper is a mathematical method which 1s smitable to
analyze the stability of second-order nonlinear autonomous systems. These kinds of systems are
very important because they model the behavior of some devices such as oscillators (Doyle ef al.,
1992). The proposed method does not have any limitations and it can even detect a stable limit cycle
appearing in the oscillation systems and furthermore the method has many applications such as
designing of cscillators.

EQUIPOTENTIAL CURVES

Consider the second-order autonomous system described by the following equation:

{5% = (x. %) (1)
%=1, (%, %)

Definition 1: A set is said “compact” if it is bounded and closed (Vidyasagar, 1993).

Definition 2: Consider the set called P so that PcR? P is said “invariant set” if the trajectories of

the system beginning in the P remain in it as t—e (Vidyasagar, 1993).

Definition 3: Suppose that the X = 0 is the equilibrium point of the second-order autonomous
system described by the Eq. 1 and suppose that the compact set called M includes the equilibrium
point (the origin). The closed curves belonging the M, which is described by u(x,, x,) = C so that CeR
and enclosing the equilibrium peint, are called equipotential curves because for each value of C
there is a closed curve with the potential of C, so all points locating on the u(x,, x,) = C have the
equal potential the numerical quantity of which is C.

STABILITY ANALYSIS

Theorem 1: The second-order autonomous system described by Kq. 1 1s local asymptotic stable
around the equilibrium point (X =0) if there are equipotential curves u(x,, x,) = C with clockwise
direction, enclosing the equilibrium point and further on the trajectories of the system 1:
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du(x:l; X,) <0 (2)
Proof: From u(x,, x,) = C, we have:
8u(x1, Xg) X:‘+ au(j;; XQ)X’; =0 (3)

1 2

and as a result, the dynamic of u(x,, x,) = C can be expressed as:

o Auix,x)
! 0%, (4)
i, x,)
! ax,

where, x; and %, are the state variables of the dynamie of u(x,, x,) = C. The velocity vector on the
u(x;, x;) = C symbolized by v, is define as Vv, =x7i, + %, , so from Eq. 4 we found that:

{fu — 6‘u(x1, Xz)ﬁx + (_ 6‘u(x1, Xz))ﬁ (5)
ax, : ax, 5

where, 8, and 8, are respectively the unity vectors of the x, axis and x, axis. Also, the velocity

2

vector of the system 11s defined as x_ x4 _+xi_, 501t can be written as:
X =% %) 0, +£, (5 %) T, ()

The derivative:

duix,, ;)
dt

on the trajectories of the system 1 can be expressed as:

du(Xsz):au(Xsz)X . 8“(X1»X2)X (N
a ox, L axy,

or:

dulx, %) _ Sutx,, XZ)E(XP X2)+Mf2(xl> Xy)= vuXi (8)

dt %, 0%,

where:

VX = |Vu|.‘§(‘sm(a)
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Equipotential |

s

=7

Fig. 1: Trajectories of an asymptotic stable system

and « 1s the angle between v, and % . So the inequality 2 can be written as:

{/ux}z<0 (9)

and this means that the direction of the trajectories of the system 1 are to inside of the equipctential
curves u(x,, x,) = C as shown in Fig. 1, on the other hand CeR and C can be changed so that closed
curves u(x,, x,) = C enclosing the equilibrium point could tend to be smaller and smaller and finally
approach to the equilibrium point (the origin). This means that the direction of the trajectory of the
system 1 will tend to the origin, so the system 1 1s asymptotically stable.

Theorem 2: The second-order autonomous system described by Kq. 1 is unstable around the
equilibrium point (X = 0) if there are equipotential curves u(x, %) = C with clockwise direction,

enclosing the equilibrium point and further on the trajectories of the system 1:

duix, %) (10)
dt

Proof: It follows from the proof of the theorem 1 that inequality 10 means that:

{/ux}z =0 (11)

and in the similar manner with the proof of the theorem 1, the direction of the trajectories of the
system 1 are to outside of the equipotential curves u(x,, x,) = C as shown in Fig. 2, so the
trajectories tend to infinity (far and farther of the equilibrium point) and this means that the
system around the equilibrium point (X =0) is unstable.

Definition 4: A limit cycle is said asymptotic stable if all trajectories in vicinity of the limit cycle
converge to it as t—«. Otherwise the limit is semi-stable or unstable (Doyle et al., 1992).

Theorem 3: Consider the second-order autonomous system 1, suppose that no equilibrium point
belongs to the compact set M which encloses the origin (X = 0). There are equipotential curves
ulx,, x,) = C, and u(x;, x,) = C, with clockwise directions that belong to M, does not intersect one
with another, enclose the origin and satisfy the following inequalities on the trajectories of the
system 1:
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4X; Trajectory
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Fig. 2: Trajectories of an unstable system

du (%, %) (12)
dt

duz(waz)io (13)
dt

if and only if there exists an asymptotic stable limit cyecle L so that:
LeintQ (14)
where, Q(C,, C,) is the region located between u (x,, x,) = C, and u,(x,, x,) = C..

Proof: (=) Similar to the theorem 1, the inequality 12 can be rewritten as:

{f%x}-—(zo (15)

This means that the direction of the trajectories of the system 1 1s to the cutside of the
equipotential curves u,(x, x,) = C, as shown in Fig. 3. In the similar manner the inequality (13) can
be expressed as:

= = (16)

where, V, is the velocity vector on the uy(x;, x,) = C, and this means that the direction of the
trajectories of the system 1 1is to the inside of the equipotential curves u,(x;, x;) = C; as shown in
Fig. 3. On the other hand there is no equilibrium points belonging to M and consequently to
Q(C,, Cy), so there is an asymptotic stable limit eycle L so that LeintQ.

(=) the necessary condition can similarly be proofed using above geometric concepts.

Remark 1: If on the trajectories of the system 1:

dul (Xl > XZ)
de

or!

duZ (Xl > XZ ) =

655



Trends Applied Sei. Res., 7 (8): 651-662, 2012

Limit cycle

Fig. 3: A stable limit cycle appearing in the system
the equipotential curve u,(x,, x5} = C, or u,(x,, x,) = G, itselfis the limit cycle respectively.
Example 1: Consider the following system:

- 2 2 2
{xl =X 0 +x; - D-4xx3

X, =4x]%, +%,(x) +x5-2)
By choosing:

1
) = )=

for C<1, it can be seen that not only the equipotential curves u(x,, x;) = C are closed but also on the
trajectories of the system:

dufx. %)
dt

so the system 1s asymptotic stable.
Example 2: Consider the following system:

%, = eYsin(x,)-4x

X, = e- sin(x1)+x27

By choosing:
u(x,, X;)= _%Xl_z - %X;ﬁ =C

for all value of the C, it can be seen that not only the equipotential curves u,(x,, x,) = C are closed
but also on the trajectories of the system:
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dux, %))
dt

so the system 1s unstable.
Example 3: Consider the following system

{5{1 =x,—x (% +2%2-10)

%, =—X; — 3% (x] + 2x2 -10)

By choosing:

1, 1 4
u1(X15X2)=_X1+_X2=C1

for 0<C<2.5, it can be seen that not only the equipotential curves u, (x;, x,) = C, are closed but also
we have:

dul (Xl’ XZ) >0
dt

Also by choosing:

1 1
u, (X1=X2):ZX14+EX§ =G,

for 2.5<C,, it can be seen that not only the equipotential curves u, (x,, x,) = C, are closed but also:

du, (x,, X;) <0

so there is an asymptotic stable limit cycle located between the u, (x;, x,) = C, and u, (x,, x,) = C..
The area located between the u, (x,, x,) = C, and u, (x,, x,) = C, is an invariant set as the following
set:

Q(CI,CE):{(XI, x2)|C1<in+%x§<Cz} (17

where, 0<C <2.5<C,. It is clear that the limit cycle can be estimated by varying the C, and C, in
(17). In above set by increasing C, and decreasing C,, the limit eyele can be found as:

[N
£X2+5X2=2.5

FIRST APPLICATION-CONTROL OF LIMIT CYCLES

Consider the following nonlinear autonomous system:

X =f(x, x,, u:) (18)

. "
X =15, X5, 0,)
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where, v, and u, are the control inputs as the form of state feedback presented by the following
equations.

{u:hl(xh X;) (19)

.
u, =h, (%, X;)

Now, the question is that how h,(x,, x) and h {x, x) must be chosen so that an asymptotic
stable limit cycle can be added to the system 18 The condition:

dul (Xl’ XZ) 20

on the trajectories of the system 18 1n the theorem 3 can be rewritten as following inequality:

h
A X0 e u

1 2

Xz)fz(xl, X, 1)=0 (20)

du, (x,,
dx

and 1n the similar manner the:

duZ(Xl’ XZ) go

appeared in the theorem 3, can be expressed as:

Mfl(xp x,, u’l‘)+
Xm dXZ

du,(x,,

Xz)fz(xl, X, ;) =0 (21)

The inequalities 20 and 21 give the conditions which have to be satisfied by u*,, u*,, u,(x,,
%) and uy(x;, X,) in order to appear an asymptotic limit ¢ycle in the system 18,

Example 4: Consider the following system:

{XlngiJqu (22)

o 7 *
Xy =X, —X/X;+1,

It 18 clear that the equilibrium poeint at the origin is asymptotic stable. Now, the state feedback
lows (u,* and u,*) have to be determined so that an asymptotic stable limit cyele can be added to
the resulted closed loop system. By choosing equipotential curves as:

(X, %) =4x +x5=C; 0<C, <12 (23)
u,(x,X,)=4x +x,=C,14<C, (24)
and replacing Eq. 23-24 in inequalities 20-21, respectively the following inequalities are found:
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8%, () — X7 + 1 )+ 8, (—X, —x/%, +1, )20, for 0 < 4x) + x5 <12 (25)

and
83, (3 — %7 + 1) )+ 8% (—x, — X%, + 1) < 0; for 14 < 4xF + % (26)

It can be derived from inequalities 25-26 that:

—8x) —8x'x; +8x,1, +8xJu, 2 0; for 0 < 4x’ + x5 <12 (27)

and
8%} —8x!x% + 8x ) +8x)u, < 0; for 14 < 4x7 + x% (28)

By choosing the state feedback laws as the following forms:

=BG )=, (B 2 (29)

1.1: =h,(x, x,)=0

and by replacing Eq. 29 in inequalities 27-28, the following inequalities are found as the conditions
to appear an asymptotic limit cycle in the system:

“oxt(Ax? 4 xE - 4B) 2 0; for 0« 4x? 4 x2 <12 (30)
and
2P (4%} + x* —4P)< 0; for 14 < 4x* + X (31)
The inequalities 30-31 both are satisfied, when:

3£[3£% (32)

It also follows from the theorem 3 that the asymptotic stable limit eyele L, which 1s added to the
system 18 using state feedback, appears in the following region:

Lc{(xl,x2)|1234xf+xi £14} (33)

SECOND APPLICATION-DESIGN OF OSCILLATION IN ELECTRONIC CIRCUITS

Consider the basic model of an oscillator shown in Fig. 4 including LC tank and dependent
current source. The state equations of the circuit can be written as the following autonomous
system:
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ﬂ"xl"-)x‘l e Camx

Fig. 4: Basic circuit of an oscillator including LC tank

(84)

where, x; and x,; are defined as the veltage which appears across the capacitor and the current of
the inductor respectively. As we see the dependent current source plays the role of the control input.
By considering the Eq. 19 and defining the state feedback as the following equation:

u', = f{lx oo, (35)

the Eq. 24 can be rewritten as:

(38)

where, || 1s infinite norm and f(-) is determined by the electronic elements such as BJT, MOSFET
and used to design the oscillator. Now, the equipotential curves u,(x,, x,) = C, and u,(x,, x,) = C, are
considered as the circles surrounding the origin and described by the following equations:

1 1

111(X1,X2)=f>«112 +EX§ =C, (37)
1 1

ug(Xsz =EX12 +EX§ =g (38)

where, C,2C,. By checking inequalities 12-13 of the theorem 3, we have:

A0 %) _ 2 gl Ly 20 (39)
dt LC ”

05 %) 2 pix Lx? <0 (40)
dt LC =

It 1s clear that above inequalities can not both be satisfied unless:

f{lx,J =) =0 (41)
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This is the necessary and sufficient condition to appear oscillation in the cireuit.
Suppose that the oscillation appearing in the circuit is as the form of sinuscidal wave, in other
word the voltage appearing across the capacitor of the tank is expressed by the following equation:

x, =V, cos (W) (42)
It 1s clear that.:
- (43)
and
|5, ]ee = sup|V_ cos{wt) =V (44)
Sothe Eq. 41 can be rewritten as:
f(lx,]) =£(V,) =0 (45)

CONCLUSION

In this study, the behaviar of a second-order nonlinear dynamical system around its equilibrium
point was analyzed based on the behavior of some appropriate equipotential curves which were
considered around the same equilibrium peint. In fact two sets of equipotential curves were
considered so that a set of the equipotential curves had a rcle as the upper band of the system
trajectory and another set played a role as the lower band. It was shown that stability of the system
around its equilibrium point can be assessed using the behavior of these two set of equipotential
curves. It was shown that the proposed mathematical method can detect a stable limit cycle
appearing in the systems and also the method has some useful applications that described in
section 4 and 5. For future works the method can be extended for analyzing of third order
dynamical systems.
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