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ABSTRACT

The objective of this study was to present a set of analytical equations for the purpoese of
computing harmonics of pulse width modulated switching functions, for a three phase matrix
converter. The analytical technique for derivation of mathematical equations 1s based on the two
dimensional or Double Fourier Series (DFS) concept. For the sake of simplicity, another method 1s
proposed for analyzing Pulse Width Modulation (PWM) harmonic spectrum. It is shown that the
whole process will be greatly simplified by employing Fourier series of a pulse train. Computations
of harmonic components of switching funections are carried out on the basis of the proposed
analytical technique and compared with the former technique based on DFS. The different ways

of ereating switching functions are also studied.

Key words: Double Fourier series, Fourier analysis, harmonic analysis, matrix converter, pulse
width modulation, switching function

INTRODUCTION

Three-phase matrix converter 1s a direct Alternating Current (AC) to AC power converter with
no Direct Current (DC) link (Wheeler ef al., 2002), The schematic circuit is shown in Fig. 1. Recent
growing interest in modeling and analysis of power electronic circuits include using switching
functions (Marouchos, 20068; Marouchos et al., 2010). In this regard it is causally necessary to find
expressions of switching functions in the analysis of switching power converters. The relation of the
input voltages (currents) to the cutput voltages {currents) provides the basis for finding the solution
to the switching functions. Alesina and Venturim (1981) came up with the complete sclution to the
switching functions of three-phase matrix converter. These solutions are expressed in the sinusadal
forms. However, in practical implementations, power switches only get the values of ones (the
switch is turned on) and zercs (the switch is turned off). The established techniques which are
usually employed to enable to generate the switching functions for power converters are PWM
based. One of our interests in this study 1s in determining how the sinusoidal forms of switching
functions can be generated with a view to using PWM technique. Although this method 1s
well-known 1n control of AC to DC power converters, very few articles have described the detailed
implementation of this, for matrix converter. In this regard three different ways of producing pulses
for switching functions will be explored. In the first method equal pulses are used in each switching
period. The second and the third methods are based on the PWM technique. Implementation of the
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Fig. 1: Three-phase matrix converter with nine (s;) switches matrix converter

second method is based on the triangular carrier comparison process. In the third method a digital
PWM process will be studied. The procedure of creating pulses 1s fully described. PWM 1s a
well-established technique with non-linear characteristics. There is a demanding requirement
for spectral analysis where PWM process is put to use. In previous studies
(Mirkazemi-Moud et al., 1994; Shen et al., 1997; Deslauriers et al., 2005), a double Fourier series
expansion has been used to obtain a theoretical solution to the harmonic spectrum of the PWM
signals for AC to DC converters. The chief aim of this study is to apply DF'S to the PWM switching
functions of a matrix converter and give the exact analytical expressions for them. Alesina and
Venturini (1981) applied a general Fourier transform to model the switches of matrix converter.
However, the statements in the study are rather complex and there is not a closed form solution to
analyze harmonic components. A linearized analysis is employed (Casadei et al., 1998) to determine
the matrix converter performance neglecting the effects of the switching harmonies. In some
papers, matrix converter operation has been simulated on digital computers (using FFT toolboxes)
in order to obtain the harmonic spectrum (Kim ef al., 2010; Lou and Pan, 2006). As far as we know
there is no report on evaluation of harmonic components based on DFS for modulated switching
funections of a matrix converter. DFS is the basic and established technique to obtain the spectrum
of PWM switching functions but not a simple one. Undergraduate students may not be familiar
with DFS concept and find themselves confronted by complexity of computing two dimensional
Fourier series coefficients and Bessel functions which appear in double Fourier series coefficients.
Extension of the double Fourier series 1s messy and finding the spectrum of the signals analytically,
is somewhat complicated. In this regard, there is a need for a simple and accurate mathematical
method that effectively eliminates complexity of the problem. The secondary goal of this study was
to give analytical expressions for PWM spectrum of switching functions using the familiar one-
dimensional Fourier series of a pulse train. This analytical approach eliminates the need for
computation of DFS coefficients and Bessel functions. The assumption of f <<f_, .
(f : modulation frequency; and carrier or switching frequency), which is acceptable in PWM
process, will be used in this method. This results in a considerable simplification of the PWM
spectrum analysis.

MATRIX CONVERTER FUNDAMENTALS AND CONSTRAINTS

For a three-phase matrix converter let us assume an input voltage set like (Eq. 1):
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V., coset)

[\((t)]: Vi cos(m]t-%—%r) (1)

4
V.o cos(ept =)

It is generally assumed that the desired three-phase output voltage is like (Eq. £). The meaning
behind these equations is that the input and output voltages may have different frequencies,

voltage amplitudes and phase angles:

qV,, cos(m.t + )

[Vﬁ(t)] =|qV,, cos{ot+ QTTE+ W) (2)

4
qV,, cos(em,t + ?Tch W)

Hence, the relationship between the input voltages and the output voltages can be written as

(Eq. 2):

(V] =[sM <[ V0]

Sy 8 8, (3
[Vn (t)] =15, 8; 34 [V; (t)]
SEI S32 S33
Similarly the relationship between the input and output currents 1s like (Kq. 4):
[1t);.] = [SOI>[V.(L)] 4

The 3%3 matrix [S], determines the relation of cutput and input quantities and is the basis of
finding the solution for modulation problem. In matrix [S], s; represents the switch state at the
specific time.

Each s;; is zero when the switch is off and is 1 when the corresponding switch is conducting.
Equation 5 demonstrates a hypothetical example of matrix [S(t)] at specific time t:

10
st)=/0 0 1 (5)
0 0

Considering the matrix converter shown in Fig. 1, the constraint equations for switching

0
0
1

matrix, [S(t)], can be determined by using the circuit theory. The restriction imposed by Kirchhoff’s
Voltage Law (KVL) can be written in mathematical expressions. For [S(t)] KVL means that the

column sum 1s not allowed to go beyond one:
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S1(0+8,, (35,1 (6)

In other words, the input terminals should not be short circuited. On the other hand the
restriction imposed by Kirchhoff's Current Law (IXCL) should be taken into consideration. For [S(t)]
it means that at least one switch in each column should be ON at any time, 1.e. the sum of any
column should be equal or greater than 1:

S (O+5,, (0 5,,(1)21 (7

This is required for the operation of matrix converter since the output phases are not allowed
to be opened. When the KVL and KCL restrictions are combined, the mathematical expression for
matrix converter constraint can be written as:

8,00+ 8,00+ 8,(0)=1 ®
j=1 23

As already mentioned, the modulation problem is to find the proper solutions for [S(t)], which
satisfy the constraint equations. Two solutions were found by Alesina and Venturini (1981) for
[S)]. The solutions are expressed in Eq. 9 and 10. A linear combination of both sclutions may also
be used. In this study an input voltage with frequency of 60 Hz and an output voltage with the
same frequency are assumed. The procedure of creating pulses 1s discussed for the second solution,
1.e., Kg. 10. Practically the same procedure can be applied for implementation of the first sclution
or any linear combination of the two solutions. Note that in Eq. 9 and 10:

is called the modulation frequency and qis the ratio of the output voltage amplitude to the input
voltage amplitude:

2 4
1+2q cos(m,t) 1+2q cos{m,t —?TE) 1+ 2q cos(m, t— ?TE)

1 4 2
[$ (D] = 3 1+2q cos{m,t —TTE) 1+2q cos{m,t) 1+ 2q cos(m, t— TTE)

2n 4z ©
1+2q cos(m, t —?) 1+ 2q cos{m, t _T) 1+ 2q cos{m, t)
form, =, —o
and 0<gq=0.5
1+ 2q cos(m,t) 1+2q cos{m, t —QTTE) 1+ 2q cos(m, t— 4711)
1 2 4
[S ()] =—| 1+ 2q cos(m,t ——TE) 1+ 2q cos(@mt——ﬁ) 1+2q cos{m,t)
3 3 3 (10)

El 2
1+2q cos{m,t —TTE) 1+2q cos{m,t) 1+ 2q cos(m, t— TTE)

for o, = +o

and 0 <q<0.5
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CREATING PWM WAVE FORMS FOR MATRIX CONVERTER

Although, the mathematical solution for switching funetions of matrix converter is well known
there are limited materials to explain how switching functions are created. In this part of the study
the detailed implementation of switching functions for a matrix converter will be explained.

Switching functions represented in Eq. 10 are in the form of sinusoids. However, a waveform
should be in the form of 1 (i.e., switch is conducting) and O (i.e., switch is open), so that it can be
interpreted as a switching function. Therefore, a pulse waveform should be generated which has
the characteristic of the switching function in Eq. 10, i.e., it should represent the sinuscidal solution
and at. the same time holds the constraints in Kq. 8. A basic pattern for turning the switches on and
off is shown in Fig. 2. In this pattern three equal pulses are generated in each switching period.
The switching frequency (f

aritoning) 15 2qual to the modulation frequency (f) ie., f =f

3 “awitching

(1)1+(1)O = 27Ef5w1bchmg

(11

This method i1s very simple to be implemented and analyzed with Fourier series (Kq. 18).
However, such a square waveform not only creates the desired sinusoidal component
(l.e.

%(1 +2qcos(m, t —3))

but it contains low frequency components.

Another switching option is Pulse Width Modulation (PWM). It 1s a flexible process which is
very common in the switch mode DC/AC inverters. PWM process approximate the fundamental
component while low frequency components are relatively small and other large components appear
close to switching frequency (Holms, 2003).

4 81,5250
| .
1 Ll
gT. Time
it 21, 5,8 Tirn
35 3s 123 zz)ssl ¢

%T: T, Time
Fig. 2: A basic pattern for the switching of matrix converter
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There are many solutions for analog implementation of PWM for DC/AC inverters, all of them
work on the same principles (Neacsu, 2006). For matrix converter the process 1s a bit more complex.
Three separate groups of pulses should be produced for (5,,(t), 5,,(t) and 5;,(t)). Two modulating
functions M, (t) and M,(t) (with the frequency of f ) are needed. M,it), M,(t) and a triangular
function (with the frequency of £ ,...) all are applied to comparators. The first comparator gives

pulses for 5, and provides a high output if:
§+ %qcos(mmt) =Tri
and a low output if:
%+ %qcos(mmt) < Tri
The second comparator gives pulses for S,; and provides a high output if:

1 2 1 2 1 2 27
—+—qcos(m, t)< Tri and Tri<—+—qcos(m t)+—+ —qcos{e t ———
- (c0,t) - (c0,t) 5734 (e, 3)

Using the fact that the sums of three switch functions in one column is equal to one, the pulses
for the third switch are obtain by using logical operands: When 5, and S;, are OFF, 5;, should be
ON. This process is illustrated in Fig. 3. The simulation method is shown in Fig. 4 using
MATLAB/SIMULINK.

220 9M1= 1/3(1+2xqgxcos(2nf t)) Triangular function f; = 1200 Hz
S 1.5 {M1 = M11+1/3(1+2xqxcos(2nf,t-2n/3)) ~--Modulating function M1
Py f=120Hz = Modulating function M2
TR Ly A N
=054
g 0.5
<00
~ 21
z Pulses for S,
o
z
i)
ERN
=]
£
< 0 T T T T T T T
— 2~
) Pulses for S,
)
z
o3
ER
=
£
< 0 T T T T T T T 1
2~
‘@~ | Pulses for S,,
S
Z
(o}
ERN
=
g
< 0 T L T T T T T 1
0 1 2 3 4 5 6 7 8
Timex 10~

Fig. 3: PWM triangle comparison process for matrix converter (Amplitude (volts) vs. time
{seconds))
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Fig. 4: Simulation method for generating PWM pulses using SIMULINK/MATLAR

Tahble 1: MATLAPR/m-file program for generating digital PWM pulses

Source code

Function 811 = pulse(time)

S11=0; fin =120; fs = 1200; q = 0.5; Ts = 145s;
n = floor(time/Ts);T = mod(time, Ts);

D1 = (A +*2*g*cos (2% pi*n*fm* Ts))* Ts/3;

if T<D1

S11=1;

else

S11=0;

end

Strong preferences for the modern implementation of PWM embrace Digital Signal Processors
{DSP) and Field Programmed Gate Arrays (FPGA) (Neacsu, 2006; Tzou and Hsu, 1997). DSPs can
be incorporated with computational software like MATLAB which enable a PC-based simulation.
The formulae which were derived and fully discussed in the next section (Kq. 34-37) can be applied
to a computer program. The program must create simulations of real-time calculations of the width
for each pulse at the switching frequency. These individual pulses are used to generate the whole
PWM signal at modulation frequency. To provide an example an m-file/MATLAB simulation
program is given in Table 1.

MATHEMATICAL ANALYSIS OF SWITCHING FUNCTIONS

Fourier analysis 1s a powerful analytical tool for signal analysis. Fourier series is used to expand
a periodic function in terms of an infinite series, while Fourier transform is the extension of Fourier
series to non-periodic functions. Fourier transform gives the representations of unknown signals
and is helpful to obtain the spectra of a signal in frequency domain (O'Gorman, 2000); however,
in power electronics the switching functions are known and for representation of the signal in time
domain the Fourier series 1s more applicable.

Assume a periodie function of time S(t) such that S(t+t) = 5(t). Then the periodic funection can
be written as an infinite sum of sinusoids known as Fourier series:
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S(t)= o, +i o, cos(net)+ b_ sin(not) (12)
Where:
m:z—;, o, =%J':+TS(I;)dt (13)
o, = % [ s(t) costeotydt (14)
b, = %IT S(sin(net)dt (15)

The series can also be written in the following form:

Sty = icn cos(net + 6_) (16)

Where:

CD:%;BUZO;CHZ‘J(an+bn) (17
0, :—tan’l(t% )

The term ¢, cos{nwt+0,) is called a harmonic of S(t). The term ¢, is the de component and ¢, is
the fundamental component. It is worth noting that the Fourier transform of any arbitrary periodic
function is a sequence of impulses with weight 2nC_ located at @ = nw, with n =0, £1, £2,... . Thus,
the Fourier series and transform of a periodic function are closely related.

To include an example, assume a pulse train with an arbitrary period of T and equal duration
of DT centered at t, (Fig. 5). The Fourier representation of this function would be extremely helpful
in later computations. The Fourier series of this general pulse train is:

2 &, sin(nnD
St (0= D 12 3 T

n=l

cos(nemt —neit; ) (18)

For PWM signals, harmonic components can be computed by Fourier analytical method
developed by Black (1953) popularly known as wall method of double Fourier series. In the

DT

A
h, 4

-

Fig. 5: Pulse train with period of T and duration of DT

1
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following part of the paper this method is employed as a general approach to evaluate the harmonic
components of PFWM switching functions. For the rest we intend to introduce two other analytical
approaches.

Approach 1 (general approach): Double Fourier series representation of switching
functions of matrix converter: Analysis of PWM signals can be done using the double Fourier
series concept. This general approach 1s well described and used to evaluate the harmonic content,
of switching functions (and output voltages) for DC/AC converters (Holms, 2003). There is a slight
difference in evaluation of double Fourier series coefficients for a DC/AC inverter and matrix
converter due to the difference between switching pulses. If a periodical waveform results from
the modulation products of two pericdical waveforms, a 3-D model and a double Fourier series is
needed to find the spectrum Black (1953). The 3-D model 1s 1llustrated in Fig. & where the 3-D
function z = 8, (x, y) is equivalent to 1 where the line y = 0 /wx (0, = 227f  and o, = 2nf_ . )
intersects the walls with vertical faces formed with modulating signals. Variables v and x are
related to:

vy=wt (19)
X=w.t (20)

The general form of double Fourier series is (Shen ef al., 1997, Deslauriers et al, 2005;
Holms, 2003):

1 s .
S (6¥) =2 A + 2 (A, cos(ny)+ By, sin(ny))

n=1

+i(AmD cos{mx)+B_, sin{mx)) (21)

m=1

m0

o Foo

+Z Z (A, cos(mx +ny)+ B, sin(mx + ny))

m=l n=11

/

“ z=S(x, (0,/o)x)=1!
1.0 4

0.8 /
z 067 x=(/3)
& (4 4x=(@W3) (-1-cosy) -1-cosy)y+2n
2 x = (1/3) (1+cosy)
%02
wn
I
N 0.0 -

Fig. 6: 3-D model representation of PWM switching function
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The Fourier coefficients are given by:

Inlin

. _ 1 (mx+ny) 22
Aua B =5 7 [ [ S )02ty (22)

With reference to Fig. 6 the value of the first switching function of matrix converter i.e.,
S5.,(x, ¥) is equal to one when O<y<2n and.:

1 1 X 1 1
—(—+ —cosy) = —=(—+ —cos
(3 3 ¥) - (3 3 y)

Substituting the integration limits inte Eq. 22 yields to:

A L _]B - 2 ( + cesy) S (X y)eJ(mxmy)dXdy
i ) _J(mn nE
J Y{ 3 3 3 }dy
Jrh— 22 casy L.
J"Y 3 d —e 3 P eJ"Ye 3 d
211 m{ Y 5[ y}
{e 3><21'g xJ (—) eij 3x27gi“x]ﬂ(%)} (23)
-2 mmn
= )amde E T () me T E (1) T (e
hzm { i (3) i x(=1) n(3)}
- x2mx] (ﬂ) ejn(%%)—e_]"(%%)
2n'm "3
2 mr . m n
=—xJ (—}x=sin(n{—+ —
p— al 3 )< sin( (3 2))
Note that:
In jmBeosy _jny n
_fﬂ e e¥dy =2mj"] (m8)
and J (-m0) = {-1)" j_(mB0), where, j_{x) is the nth order of Bessel function.
For n=0:
2 mm . Tm
B =0A, =——xJ(—)xsin(—)
m 3 3
For m=0:
1 ) 1 1] 2 On=1 1
242 cosy T T kU
A+ B, = X, e dxdy = +—cosy)e™dy=—| | —e"™dy+ | —cosve'™dy =11 oA, —
o+ 1Bay .]”3 2 S YNy = 2 [ o Seosyey = !3 y !3 ye'"dy P

zern zeroforalln=l

Form=n=0:
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(4+—cnsy)

I]EI_

2n 2n
n T 2 1 1
+—cosy)dy_— —dy+ | —cosydy |=—= —A,,_—
5[3 5[3 3 2 3

——
zero

- —cnsy)

Hence, the Fourier series of 5,,(t) can be expressed:

5, (t)y=— lcos(m L)+ i — (—)sm(—) * cos(mem t) + i i iJ (—) sm(Tc(—+ —)) * cos(mem,t+ new, t) (24)
Tm m

m=1 m=1 n=*1

More often electrical engineers are interested in harmonics of cos (w_t), thus:

£ (25)
S”(t)=%+%cos(mmt)+ i le’l ( )sm(—)xcos(mpm ty+ ZZ m )sm(Tc(—+ ))xcos((mp+n)m t)

m=1 m=1 n=*1

Observation of this expression provides wuseful and relevant information about
amplitude of the components at the modulating frequency. First, it would normally
be expected that the DC component and the fundamental component, be equal to 1/3 for
q =0.5. The third term of Kq. 25 gives a portion of the amplhitude of harmonics which
are equal or higher than the switching frequency. Because of the presence of sin{mmn/3), for
all m multiples of 3 the third term is equal to zero. The fourth term also gives a
portion of the amplitude of the harmonics which are equal or higher than the switching
frequency and also it gives the amplitude of other harmonies. In order to find a desired harmonic
e.g., the second harmonic the equation mp+n = 2 should be sclved for all positive integer values of
m and negative and positive integer values of n. Note that for the harmonics equal or higher than
the switching frequency two equations should be taken into consideration, e.g., for the tenth
harmonic:

mp+n=10
mp=10

should separately be solved for all positive integer values of m and negative and positive integer

values of 2.

Approach 2: Representation of switching functions of matrix converter using Fourier
series of a pulse train with variable duration: In this approach it is assumed that the
switching function S,,(t), generated by PWM process, is the same pulse train as
represented in Fig. 5. However, the duty ratio (i.e., D) of the pulse train illustrated in Fig. 51s fixed
and has a constant value but there is no particular value of D for the PWNM signal and it varies
with time:

Dn(t)=é+§cos(mmt) (for q=0.5) (26)
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Substituting this time variable function into Fourier series Kq. 18 results in:

11 - sin(m'c(l+ lcos(mmt))) (27
S, )= 3t gcos(mmt) + ;Z 3 ;’ cos(ne,t)

It 1s no longer a Fourier series, owing to the appearance of the term:

. t
sm(rm(% COS(CO )

— )

This expression can be analyzed using following equations and again it can be analyzed by
taking advantages of Bessel functions.

The term:
sin(mt(% COS(‘” cos(o,t),,
can be calculated by the following equations:
sm(% + %@mt)) - sm(%)cos(%(mmt)) + cos(%)sm(%(m’“t)) (28)

sin( )= 2J( )cos(m ty—2J (—)005(3(9 ty+ 27 ( )cos(Sm t)—.. (29)

nmcos(m, t)
3

rmcos(m t)

08( =7 (—) 2 ( )005(20) t)+ 27 ( )cos(4c0 ty—27 ( )cos(6c0 t+.. (30)

where, J_(x) is the nth order of Bessel function.
Development of the series in Kq. 27 yields to:

S I i1
gin{—+ —xcos(m, t
(3 3 (e2,1))

H=— —=——cos(net
Z:; - (nest)

sin(%) cos([;—n cos(on, 1)) + cos(%) sin(% cos(e, b))

cos(nem t)
nel n

sin(ﬂ) © COS(H)

{i n3 cos(r;—ncos(mmt))+z n3 sin([;—ncos(mmt)) cos(nm,t)

n=l n=l

sm(—) = 005(—)
J, (—) 27 (—)cos(Zo;\ t)+27, (—)cos(4o;\ t-..) +Z

21 (—) cos(m, ) — 27 (—) cog(3m, 1) + 27, (—) cog(Sew,t) —...) pcos(net)

= Ei l{sin(ﬂ){JE| (E) + i 1" %27, (E) cos(2mmmt)} +8 CDS(E) {i (1™ 2T, 1( )cos((2m Do, t}} cos(nm,t)
niS o0 3 37 = 3 3 L=

sm(—) sm(—) - cos(—)

= 2 i 37 (—) cos(ne,t) + i i -D™x 2]2“‘(—) cos(Zmam, t)cos(nemt) +Z Z
n n =

n=l m=l =l el

(2T, () cos(2m - D cosun,)

(31)
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The closed form solution 1s:

1 1
§,(t)= §+ gcos(mmt)

-1 | it
(3

I, (n_;c) cos(nm;t)

(32)

+3 3 Cnmx 2, (?) cos(2me, t)cos(nem,t)

+3 T?’ D"t =2r, (%) cos({2m — 1), t)cos(nm t)

This expression verifies that the desired components appear, i.e. the DC component and the
fundamental component are equal to what was expected. The third term of Eq. 32 1s exactly the
third term of Eq. 25 and gives a portion of the amplitude of harmonics equal and higher than the
switching frequency. In the fourth and the fifth terms we observe the product of cosine functions.
Since we are concerned with modulation frequency using the product identities yields:

(33)

cos(2mem, t)cos(nmt) = %(cos((Zm + pn)e, t)+ cos((Zm — pn)mmt))

cos((Zm— Lym, t)cos{nm,t) = %(cos((Zm —l+pnjm, t)+cos((Zm—1- pn)comt))

In order to find a specific harmonic e.g., the second harmonic four equations (2m+pn = 2,
2m-pn =2, 2m-1+pn = 2 and 2m-1-pn = Z) should separately be solved for all positive integer values
of m and n.

Approach 3: Simple representation of switching functions of matrix converter using the
sum of one dimensional Fourier series: Owing to the difficulty in the evaluation of Bessel
funection and deuble Fourier coefficients, another method will be introduced to analyze the PWM
signals.

Let define psz'fﬁ . Then, there are p pulses in each T _ :fi. If the width of each pulse in each

m

sampling time T = was known, it would be easy to use a simple sum or the superposition of

switehing
the p pulses to generate the wheole PWM signal. However, the calculation of pulses' width is
actually a tedious work because a nonlinear equation should be solve to find the crossing points of
the carrier and modulating function in each T, Fortunately an assumption would help in this case.
Since, in the PWM process the frequencies are chosen so, that £, >>f  then: T <<T . During the
sampling time (T,) the wvariable t in Eq. 10 can be assumed constant. It would result in
a simple calculation for pulses width. For example for f, =f, =60 Hz, the modulation frequency is

f =f+f =120 Hz. For switching (or sampling) frequency of = 1200 Hz one pulse is produced in
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each T, and ten pulses are produced in each T . Let us define the width of pulses for 5, as ;. The
width of the pulses can be calculated with the following equation:

“ n
D" = A (1+ 2q cos(m, f—))
fs
f

m

(34)

n=1:(=")

The above index (i.e., n) represents the nth pulse and index 1 is used for S,,. For 5, and 5,
using Eq. 35 and Eq. 36 would give the pulses’ width:

D=+ 2qcos(comf£—%))x% (3b)
D" =(1+ 2qcos{m,, fi_ 4;)) xé (36)

5

Again if at any sampling time, T, the time is assumed constant, then, for each p pulse, t.*, the

1 Vg

center of the pulse, can be computed by:

D" (m-1)

fors, (t):t" =—— 4 ——
S0i7 =T T

D, (n-1)

fors, (t):t," =D+ 2 +>——=

oS, ()t T 5 + F (37)

s

D" -1
forS, (t):t,"=D" +D,* + Ter Lf )

s

n=1:p

In Fig. 7 for the ratio of switching frequency (f, = 1200 Hz) to modulating frequency
(f =120 Hz), equal to ten {p =f/f = 10), the pulses are delineated in each T_. The Fourier series
of each pulse in the funetion S,;{t) can be evaluated from KEq. 18. Let 5F,(t) denote the Fourier
series of each pulse in 5,,(t). Substituting the duration of D P centered at t,* in Fourier series of the
pulse train yields:

M@ r i L
0 —F 0 —P
'i' Time . T.) Time
1) = r) P P Puo
¢ » 0 >
Time Time

Fig. 7(a-d): S, can be assumed as a combination of p individual pulse trains, (a) 1st, (b) 2nd, (c)
10th and (d) Sum of 10 pulse trains
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S =D )+ 2 i sin(nzD,* ()

—————cos(nm,t—net ") (38)
b A n
5,,() can be assumed as a combination of individual pulse trains (Fig. 7). If the Fourier series
of each pulse is defined as 5,,° then the function S,,(t) is simply computed by:

5, (ty= Zp Sn‘ (39)

The same formulation can be derived for Si(t) (i,j = 1,2,3). This would be an easier approach
comparing to Kq. 25 and Eq. 32 for understanding the properties of PFWM and computing harmonie
component of the function S,(t). For example if the fundamental harmonic of S,(t) is impertant teo
be known, it can simply be calculated with the sum of p phasors and there would be no evaluation
of Bessel function or complex double Fourier series. Referring to Kq. 38 the phasor of fundamental
component for the first pulse (d.e., p = 1) is:

</

2 .
= Zsin(nD,'), < C' =8, = et/
T

Simply the phasors of fundamental component for nine other pulses in 5;(t) can be evaluated
and so, the fundamental harmonic of 3,,(t) can be expressed:

€ <0 =¢ <0 +¢ <0 +. 4cf<0F (40)

A complete result of such calculation is given in the computation next section.

COMPUTATION RESULTS

In this part, the calculation results of harmonie analysis for switching function of matrix
converter based on the three approaches are presented. Matrix converter is switched at the
frequency of f, = 1200 Hz and the input frequency is assumed to be f, =60 Hz. The desired output
frequency is also f, = 60 Hz. Referring to Eq. 9, f{ = { £, = 0 is a valid choice but it eliminates
oppertunities for control. In this case the choice for modulating frequeney is f, = f+f = 120 Hz.
Figure 8 represents the amplitudes of harmonics evaluated by MATLAB based on Eq. 25
Harmonies with magnitude of less than 0.02 are not shown in Fig. 8. It can be inferred that the
significant. components are DC, fundamental, tenth and also upper and lower sidebands of the
tenth harmonie (switching frequency). Results for magnmtude of the DC component and harmonics
{one up to ten) are given in Table £. Since, the double Fourier series approach is considered to be
the general method, the results of calculations, based on two other approaches can be compared
with that. Comparison of calculation results of the simple approach with the general approach
provides verification of accuracy for this approach. Approach 3 1s also applied to three switching
pulse functions 5,,, S,;, 5;;, and the DC components, fundamental components and other harmonics
are evaluated by MATLAB. Both amplitude and phase angle of sinuscidal functions are
represented in Table 3. Results show that the switching functions have the desired components of
Eq. 10. The comparative information that can be gained from the inspection of Table 3 is worth
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Fig. 8 Harmonics of 5,

Table 2: Calculation results for magnitude of switching function Sy

Harmonic number Approach 1 Approach 2 Approach 3
DC component (Volts) 0.333333333 0.333333333 0.333333333
Fundamental (120 Hz) 0.333333335 0.333333338 0.331057656
Second harmonic (240 Hz) 0.000000074 0.000000149 0.000498162
Third harmonic (360 Hz) 0.000000658 0.000001316 0.000133992
Fourth harmonic (480 Hz) 0.000015171 0.000030342 0.000071747
Fifth harmonic (600 Hz) 0.000099713 0.000199426 0.000000000
Sixth harmonic (720 Hz) 0.001634071 0.003268143 0.000297166
Seventh harmonic (840 Hz) 0.007107575 0.014215151 0.005690267
Kighth harmonic (960 Hz) 0.068900939 0.137801882 0.049949365
Ninth harmonic (1080 Hz) 0.144840748 0.289681496 0.175368518
Tenth harmonic (1200 Hz) 0.410228268 0.410228595 0.409573399

Table 3: Harmonic calculations (magnitude (volts) and phase angle degrees) based on approach-3 for three Switching functions Sy, 8¢

and 83
Harmonic number S Ses Sas
DC (Volts) 0.3333 0.3333 0.3333
120 Hz (Fnd) 0.3311=91.2 0.3371<211.8 0.3311=-28.6
240 Hz (2nd) 0.0005=-41.6 0.0002=63.6 0.0005<168.8
360 Hz (3rd) 0.0001<97.2 0.0001<95.4 0.0001<93.5
480 Hz (4th) 0.0001=-38.0 0.0001=-52.5 0.0001<=-67.4
600 Hz (5th) 0.0000=-79.5 0.0000=-12.0 0.0000<180.7
720 Hz (6th) 0.0003=-23.9 0.0003=250.7 0.0003<165.2
840 Hz (7th) 0.0057=-71.3 0.0024=-77.4 0.0057<=-83.4
960 Hz (8th) 0.0459=-4.7 0.0626<134.4 0.0499<-86.4
1080 Hz (9th) 0.1754=-78.5 0.1328<166.2 0.1754<50.9
1200 Hz (10th) 0.4096<8.1 0.4063<18.0 0.4096<27.8
1320 (11th) 0.1150<104.9 0.1579<229.8 0.1150<=-5.3
1440 (12th) 0.0876=4.0 0.0744=<261.5 0.0876<159.1
1560 (13th) 0.0079<149.6 0.0158<113.3 0.0079<77.13

noting. For example as it was expected that fundamental components of three switching functions
have 120° phase difference but the same amplitudes. The undesired components (i.e., low
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frequencies) are low enough that a low-pass filter would reduce distortion. The results
obtained from approach-3 show that this method is a good approximation to the PWM harmonic
content.

CONCLUSION

In this study, three analytical approaches for the study of the harmonic spectra of PWM
switching functions of a three-phase matrix converter were presented. Three different ways were
also explored for generating switching pulses of a three-phase matrix converter. Fully detailed
procedure of creating switching pulses was demonstrated. The first method was a technique with
equal pulses in each switching period. In the second method triangular carrier was employed in
creating PWM pulses. The third method was a digital based procedure for ereating switching pulses.
In this method the width of each pulse, in each switching period, was computed and then the whale
switching pulses were generated. Kxact mathematical expressions were derived for the spectra of
the switching functions. In order to cancel the requirements for computing the double Fourier series
coefficients and Bessel functions, a simple approach was proposed to analyze the switching function
based on one dimensional Fourier series of a pulse train. Calculations of harmonic components of
switching funetions were executed on the basis of the proposed analytical technique and compared

with other analytical approaches.
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