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ABSTRACT

In this study, a further investigation on the integral solution of the boundary layer momentum
and energy equations which are originally concerned by von Karman and Pohlhausen, is done.
According to various profiles that we suggest, an analysis on the errors in the values of the friction
coefficient, C; and Nusselt number, Nu, are drawn. Although, it is implied in references that the
best choose for the velocity and temperature profiles 1s the one that can satisfy necessary and
sufficient boundary conditions, but several combinations for degree of velocity and temperature
profiles exist that show better approximations for values of Nu compare with mentioned profiles.

Key words: Boundary layer, Blasius solution, momentum and energy integral equations,
Pohlhausen method, friction ceefficient, nusselt number

INTRODUCTION

Despite its simplicity, parallel flow over a flat plate occurs in numerous engineering applications.
Assuming steady, incompressible, laminar flow with constant fluid properties and negligible body
forces, viscous dissipations and without any heat generation and pressure gradient, the boundary
layer equations reduce to:

Continuity:
vy (1)
ax  dy
Momentum:
du, du_ du (2)
u&+vg—v§
Energy:
ar, or_ ot (3)
s +vay = Oiayz
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For solving these partial differential equations, with an ingenious coordinate transformation,
Blasius and Pohlhausen showed that the velocity profile u/u, and temperature profile:

and

{Bergman et al., 2011).
The final results of the Blasius solution lead to the following (Bergman et al., 2011):

5 0.664
8= R—iz, Cra= a5~ Pr¥* and Nu, =0332Re!? pr¥’ (4)
eX ’ eX

An alternative approach to solving the boundary layer equations involves the use of an
approximate integral method. The appreach was originally proposed by von Karman and applied
by Pohlhausen. It 1s without the mathematical complications inherent in the exact method; yet it
can be used to obtain reasonably accurate results for the key boundary layer parameters
(8, C;, 6, Nu). To use the method, the boundary layer equations, must be cast in integral forms.
These forms are obtained by integrating the Eq. 1-3 in the y-direction across the boundary layer
that leads to following equations:

%UDa(um711)11dy}:v%1y=‘J (B)
%U :((Tme)u dy}:a% (6)

-0

which are the integral forms of the boundary layer momentum and energy equations.

These integral equations can be used to obtain approximate boundary layer sclutions. The
procedure involves first assuming reasonable functional forms for the unknowns u and T in terms
of the corresponding (unknown) boundary layer thicknesses. The assumed forms must satisfy
appropriate boundary conditions. Substituting these forms into the integral equations, expressions
for the boundary layer thicknesses may be determined and the assumed functional forms may then
be completely specified. Although, this method is approximate, it frequently leads to accurate results
for the surface parameters.
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Although, there are a wide range of studies that apply the integral boundary layer equation
method but there are not enough explanation on the effect of the various types of velocity and
temperature profiles on the boundary layer parameters.

A new investigation on the integral solution of momentum equation is carried out by
{(Saedodin and Barforoush, 2012). By various profiles that they suggested, an analysis on the errors
for the values of the boundary layer thickness and friction coefficient, was carried out. The
problematic conelusion is that, may be a chosen velocity profile that 1s nearly lies to the exact one,
creates bigger errors in the values of d and C; comparing with the velocity profile that has more
derivate from the exact profile.

This study emphasizes on the effect of the velocity and temperature profile types on the
boundary layer parameters such as friction factor and Nusselt number.

Obvicusly, if we would choose profiles in the forms of polynomials in n degree, we need to n+1
conditions to evaluate the coefficients of those functions.

For the flow over a standstill plate with a constant temperature, two following statements are

apparent:

I  ufu, and T* must be zero at vy = 0 that come from no-slip condition and the continuity of
temperature in the surface, respectively
IT ulu, at ¥y =& and T* at y = 8, must be unity that come from the concept of the boundary layer

thicknesses

Then the following boundary conditions must be applied step by step for each one order that
the degree of polynomials is increased:

ITT dufdy and aT*/dy must be zero at y = 0 and y = §,, respectively
IV 3%u/ay? and 3*T*/3y? must be zerc at v = 0, that come from Eq. 2 and 3 and considering no-slip

condition in the surface

In fact, four above statements are the whole of physical conditions that the suggested
polynomials must satisfy. But, for polynomials that their degrees are higher than 3, we need to
extra boundary conditions. In this article we choose:

o'u 2T
P 0
Y 7= =5,
for polynomials of degree higher than 3 and:
9’ T
s
¥ =3 Y =

for pelynemials of degree 4. The recent assumptions and also the statement number I11, denote to
uniformity of velocity and temperature distributions out of the hydrodynamic and thermal
boundary layers, respectively.

38



Trends Applied Sei. Res., 8 (1): 36-45, 2013

Applying these boundary conditions lead to the following functionals that are lhisted by
increasing the degree of polynomials:

s (7)
B ©
2 ?

ERH]

A o

where, e must be chosen as 6 and 9, for velocity and temperature profiles, respectively.

DESCRIPTION OF THE PROBLEM

As we suggest five optional profiles for velocity and temperature, then all of their combinations
create 25 cases. We nominate these cases by symbol M-N that M and N refer to degrees of velocity
and temperature polynomials, respectively.
By using each of these combinations inte Eq. 5 and 6 and by considering that the value of & and
8, are zero in the leading edge x = 0 we obtain the values of 8, C,, {, Nu and the errors of caleulated

values of C; and Nu which are calculated in the following manner:

{actual value-estimated value)
actual value

Error in percent= x100

The results of these calculations are tabulated in Table 1 and are drawn in Fig. 1-6.
A sample calculation for case 2-4 is presented in the following:
Substituting:

2
L Ls¥Y (¥
u, & | a

in Kq. 5, we have:
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Tahble 1: Results of the errors for values of C; and Nu with different velocity and temperature profiles

Profile type M-N dxRe'?x Cp<Ret® xPrit NuxRe ¥expr—¥? Error C; (%) Error Nu (%)
1-1 3.464 05877 1.000 0.289 -13.1 -13
1-2 1.587 0.364 +9.6
1-3 1.357 0.319 -3.9
1-4 1.710 0.338 +1.8
1-5 2.061 0.350 +5.4
2-1 5477 0.730 0.585 0.312 +9.9 -6
2-2 0.928 0.393 +18.3
2-3 0.794 0.345 +3.9
2-4 1.000 0.365 +9.9
2-5 1.205 0.379 +14.2
3-1 4.641 0.646 0.719 0.300 =27 -9.6
3-2 1.141 0.378 +13.9
3-3 0.976 0.331 -0.3
3-4 1.229 0.351 +5.7
3-5 1.481 0.364 +9.6
4-1 5.836 0.685 0.561 0.308 +3.2 -7.8
4-2 0.890 0.385 +16
4-3 0.761 0.338 +1.8
4-4 0.959 0.358 +7.8
4-5 1.155 0.371 +11.7
5-1 7.036 0.711 0.624 0.570 +7.1 +71.7
5-2 0.786 0.452 +36.1
5-3 0.739 0.481 +44.9
5-4 0.846 0.420 +26.5
5-5 0.947 0.375 +13
14

v 12 4

£ 104 —

g ¢

L s

1 oo
0 T T T T
1 2 3 4 5

M

Fig. 1: Effect of velocity polynomial degrees on the magnitude of C; errors

Applying the integration leads to:

By separating of the variables:

5 d5 -2V 4x
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Fig. 2: Effect of temperature polynomial degrees on the magnitude of Nu errors (the degree of
velocity polynomial is equal to 1)
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Fig. 3: Effect of temperature polynomial degrees on the magnitude of Nu errors (the degree of
velocity polynomial is equal to 2)
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Fig. 4: Effect of temperature polynomial degrees on the magnitude of Nu errors (the degree of
velocity polynomial is equal to 3)

By solving this differential equation and applying the boundary condition &(Q) = 0, &(x) 1s

calculated as:

5477x
e

X

)
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Fig. B: Effect of temperature polynomial degrees on the magnitude of Nu errors (the degree of
velocity polynomial is equal to 4)
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Fig. 6: Effect of temperature polynomial degrees on the magnitude of Nu errors (the degree of

velocity polynomial is equal to 5)

Using this value together with:

du
9y |,

B3

Loy
SPul

C;, 1s calculated as:

_0.730

Now, using the above mentioned for u/ue and:
3 4
T =22 o Y|+ ¥
81 81 81
in Eq. 6 we have:
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[Fu(r T‘”){lzalt”{slj {Slj }{2%[%}2] dy}zs—?(l -T.)

Applying the integration leads to:
5258 )
d{uw(Ts—Tm)[l s t2+28 )HZM(TS_TW)
dx 210 5 3,

By assuming that the thermal boundary layer is thinner than the hydredynamic boundary
layer (8,<8) then by introducing a variable such as { = 8,/ we have {<1 and the term involving ¢*
is small compared with the {* term. By neglecting the {* term, the last equation will be reduced to
the following:

2, 252
x| " 15 S

Using:
5477x
~ Re!”?
and by rearranging, we obtain:
gaaxpde_o

by introducing {* = ¢, the above nonlinear differential equation could be transformed to the
following linear first order differential equation:

de 3 3o

E_
dx  4x dvx

By solving this differential equation and applying the boundary condition J(0) = O, {(x) 1s
calculated. And finally, using this value together with:

5.477x
8=—p
Ref

and

oT
_ X ay ¥=0
¥ kT —-T,

Nu, is calculated as Nu, = 0.365 Re,'? Pr'?,
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CONCLUSION

The following results can be obtained from Table 1:

As M rises from 1 to 3, the errors for the values of C; decrease and as M rises from 3 to 5 these

errors increase. On the other hand, the best estimation for the value of C; oceur in M = 3. For

justification of this result in the references (White, 1998) it is said that “as the third degree

polynomial profile for velocity satisfies four boundary conditions that are physical nature of the

problem, it leads to smallest errors for C,in compare with ancther ones”

The errors for the determined values of C;in various cases are listed by ascending arrangement,

3-N 4-N 5-N 2-N 1-N

That. shows the importance of satisfying appropriate boundary conditions in velocity profile for

evaluating C, Simply, even if redundant boundary conditions are applied it is better to vanish

some of the boundary conditions

For equal degree of velocity and temperature profiles the errors for the determined values of

Nu are listed by ascending arrangement

3-3 4-4 5-5 2-2 1-1

And this shows although in the cases 5-IN the choices N =1 to 4 lead to big errors for Nu, but

in these forms, choice N = & gives acceptable error for this parameter

Based on the mathematics principals, every inaccuracy on the used profile

+  Could be stylized when it is used in integration procedures and then will create negligible
errors

«  Could be amplified when it is used in derivation procedures and then will create considerable
errors

Since in the procedure for caleulation of Nu the velocity profile is used in both of momentum

and energy equation unlike the temperature profile which is used only in energy equation,

often when x>y the case y-x provide the better estimations for Nu compare with the case x-y

Except for case 1-1, the other profiles 1-N often lead to a very small errors for the value of Nu

and this clarify that the crude linear profile may be used to estimate the Nu very better compare

to several types of the other velocity distribution. In the other words, failure to satisfy the

boundary conditions (IIT) and (IV) in the velocity profile often does not lead to considerable

error on the value of Nu

Although, the calculated values of C;in cases N =1 and 3 are lower and in cases N =2, 4 and

5are upper than exact value of C, but there is no similar conclusion for Nu, except for case

M = 5. Put another way, in each degree for velocity profile, various temperature profiles lead

to lower or upper values of Nu comparing the exact values, except for M = 5 that in this case

all of the values for Nu are bigger from the exact value

Crenerally, it seems that the cases B-IN have the worst estimation for the value of Nu and it

implies that when the velocity profile is choesen in fifth degree, that has two additional boundary

conditions further than basic boundary conditions [ to IV, it will lead to the drastic errors on the

values of Nu

It is obvious that the best estimations for the wvalues of C; and Nu ean be obtained

simultaneously in the case 3-3 that is conformed the Pohlhausen solution. In fact, it implies that

since the third degree polynomials for the velocity and temperature can satisfy all of the

necessary and sufficient boundary condition [ to IV then this option will lead to the best

approximation (Kays and Crawford, 1993). But it is important to notice that there are many

cases in form 3-N that are not better than M-N (i.e., see cases 3-1 and 2-1) and so there are
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many cases in form M-3 that are not better than M-N (i.e., see cases 1-3 and 1-4). In the other
words, ideality of third degree polynomial is only when we choose M and N equal to 3
simultaneously. And there are many cases that the choice of just one of M or N equal to 3,
which does not provide satisfactory estimation for Nu

NOMENCLATURE

u x velocity component, ms™
v y velocity component, ms™
u. Free stream velocity, ms™
T Temperature, K

T. Free stream temperature, K
T, Surface temperature, K

Pr Prandt] number

Re, Local Reynolds mumber
Crx Local friction coefficient
N, Local Nusselt number

Greek symbols:

« Thermal diffusivity, m’s™

v Kinematic viscosity, m’s™

) Hydrodynamic boundary layer thickness, m
0, Thermal boundary layer thickness, m

{ The ratio of 8,/d
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