

Trends in Applied Sciences Research 10 (5): 231-244, 2015
ISSN 1819-3579 / DOI: 10.3923/tasr.2015.231.244
© 2015 Academic Journals Inc.

A General Evaluation Pattern for Pseudo Random Number
Generators

1Ahmad Gaeini, 1Abdolrasoul Mirghadri and 2Gholamreza Jandaghi
1Imam Husein Comprehensive University, Iran
2Faculty of Management and Accounting, Farabi College, University of Tehran, Iran

Corresponding Author: Gholamreza Jandaghi, Faculty of Management and Accounting, Farabi College, University of
Tehran, Iran

ABSTRACT
Many models have been designed for generating pseudo random numbers and there is the

potentiality to design more. Among the mentioned generators, a few of them are applied in
cryptography. Thus, there is an inevitable need among researchers and users for evaluating the
generators. A variety of criteria are used for evaluation which have more or less or neutral
importance depending on the way the generators are applied. Accordingly, some reliable sources
pay attention to the particular criterion while overlooking others. In the present study, in addition
to enumerating all of the popular criteria, there has been an attempt to classify them in the form
of a general model. At the end, some suggestions are presented for the foremost priority in using
and applying the criteria. With implementing this pattern all the criterions have been considered
and on the other hand the probability of second type error will be reduced. Also, observance of the
sequence of criterions would cause saving in time and costs.

Key words: General evaluative model, pseudo random number generators, cryptography

INTRODUCTION
Random numbers are applied in several sciences such as simulation, modeling, computer

sciences, statistical sampling and cryptography. With the expansion of network communications
and unauthorized accessibility to the exchanged information, the development of research seems
necessary. Random numbers play such a key role in cryptography that it seems impossible to
consider a cryptography program without using random numbers (Kang, 2005). Using insecure
random numbers in cryptographic systems leads to the insecurity of the whole system. Thus,
evaluating the generators and not using insecure generators is a significant step in achieving
secure cryptographic systems.

In the following, some applications of random numbers in cryptography are mentioned:

C Message and session keys for symmetric ciphers, such as triple-DES or Blowfish
C Seeds which usually produce mathematical values, such as prime numbers in RSA or ElGamal
C Salts to combining with the passwords which cancel the program for guessing the passwords

in offline mode
C Initialization vectors for chaining modes
C Random values for special requests from digital signature schemes, such as DSA

231

http://crossmark.crossref.org/dialog/?doi=10.3923/tasr.2015.231.244&domain=pdf&date_stamp=2015-10-02

Trends Applied Sci. Res., 10 (5): 231-244, 2015

C Random challenges in authentication protocols, such as Kerberos
C Nonces for protocols, to ensure that different runs of the same protocol are unique; e.g., SET

and SSL (Kelsey et al., 1999)

Generating true random numbers based on physical sources by computers is time consuming
and costly. The production speed is usually low in these generators, thus, pseudo random number
generators are used which are able change a short sequence of random numbers into a long
sequence of numbers in a way that appear to be random. “Indistinguishable from truly random
sequence” and “unpredictability to an adversary with limited computational resources” are two
main requirements for output of pseudo random number generators (Kang, 2005).

Confirming the fact that a generator is really pseudo random is difficult but one can reject that
a generator is pseudo random by statistical tests and the mentioned essentials. Therefore, success
in a statistical test can be regarded as a criterion for identifying suitable generators.

Given that the method for distinguishing between output sequences of generators and true
random sequences is called attack (Kelsey et al., 1998), an appropriate generator has to be resistant
to identifiable attack. Then, resistance against identified attacks is another criterion for identifying
an appropriate generator. Other factors such as speed, long sequence can be used as a criterion for
identifying a good generator.

Patidar et al. (2009) run NIST (3 level) and DIEHARD tests for their generators based on
formed chaos standard mappings in. They took this as the only criterion for analyzing generators
(Patidar and Sud, 2009). Orue et al. (2010) proposed a generator based on Fibonacci mapping and
evaluated that in terms of speed, easy implementation, long period and success in statistical tests.
Gayakwad and Ranbir (2012) proposed a useful pseudo random number generator for processing
image. They evaluated the generator with criterion such as speed, easy implementation, Monobit
and serial tests and other NIST tests.

Akhshani et al. (2014) for pseudo random number generator based on quantum chaos mapping
applied 4 famous souit of statistical tests, DIEHARD, ENT, NIST and U0I. They also considered
speed and easy implementation criterions.

Reyad and Kotulski (2015) presented a generator that is combination of elliptic curves and
chaos mapping and for its evaluation, they investigated only 5 statistical tests addition to speed
and long period criterions.

In this study, there is an attempt to present all the criteria proposed by researchers in
cryptography as an applicable evaluative model so that one can evaluate his/her generator or other
generators without referring to several sources. Then they can use the criteria based on the priority
we proposed.

James (1990) enumerated the criteria for a suitable generator as long period, uniform
distribution, repeatability, having disjoint subsequences and portability. Kelsey et al. (1999)
proposed the comprehensive classification of several attacks on the generator. Kelsey et al. (1998)
suggested four criteria as resistance against attacks, efficiency, the capacity for reseeding and
resistance against disavowal. Given the significant role of chaos mapping designing pseudo random
number generators, paying attention to essentials of chaos based systems proposed by Gonzalo and
Li (2006) would be necessary. Statistical packages are a set of statistical tests which, in designers’
perspective, can be a criterion for the suitability of generators if they are not rejected. Applying
programs such as DIEHARD in reference (Marsaglia, 1996), ENT in reference (Walker, 2008), U0I

232

Trends Applied Sci. Res., 10 (5): 231-244, 2015

in reference (L'Ecuyer and Simard, 2007) and NIST in reference (Rukhin et al., 2010) are available.
Babaei and Farhadi (2011) suggested that the essentials for a pseudo random number generator
are uniform distribution, independence, the long period and unpredictability and offered the use
of U0I package for examining these essentials (Babaei and Farhadi, 2011). Yang and Xiao-Jun
(2012) applied autocorrelation and NIST tests for the suggestive generators based on empirical
distribution of data. Furthermore, they examined the analysis of the key space and sensitivity and
speed analysis (Yang and Xiao-Jun, 2012). Francois et al. (2013) applied the NIST tests for three
types of output sequences and made a correlation analysis for three subsequences and examined
the security analysis for the size of the key space, key sensitivity and key selection. Then, they
studied the resistance against guess-and- determine attacks (Francois et al., 2013). Ilyas et al.
(2013) applied for a suggestive generator the NIST package in deeper level which was a uniform
distribution on p-value (Ilyas et al., 2013). Stoyanov and Kordov (2014) applied three testing
packages namely, DIEHARD, ENT and NIST on a large number of a generator based on chaos.
Then, he examined the portion of successful sequences (Stoyanov and Kordov, 2014). Wang and
Nicol (2015) showing the weak points of NIST package with respect to indicating nonrandom
generators as random, suggested that there should be tests based on statistical distances such as
iterated logarithm for decreasing type two error (Wang and Nicol, 2015). Hamdi et al. (2015)
proposed the criteria for long sequences and uniform distributions for generators and examined the
speed and resistance analysis against differential attacks. Moreover, the NIST tests were applied
in several output sequences and the results were compared based on the ratio of success in AES
algorithm (Hamdi et al., 2015).

It should be noted that, according to the current trend, in order to evaluate the suggestive
generators, only a few criteria can be considered to accept a generator while the same generator
may be rejected if evaluated by other criteria. In this study, considering other criteria proposed in
the literature and based on the experiences of the authors, a model is proposed which has a general
perspective toward evaluating random number generators. Observing this model causes increase
in security level of generators and thus, increase in security of cryptographic systems.

MATERIALS AND METHODS
General definition and concepts: As a basic definition of pseudo random number generators,
it is necessary, first, to elaborate on the definition of indistinguishability of two ensembles
(Goldreich, 2004).

Definitions 1: Two ensembles {Xn}n0N, {Yn}n0N are called indistinguishable in polynomial-time
when we have for each probabilistic polynomial-time algorithm A and each polynomial p and all
sufficiently large n,s:

(1)     n n

1
Pr A X 1 Pr A Y 1

p n
         

Ensemble {Xn}n0N would be pseudo random if {Xn}n0N and {Un}n0N be indistinguishable, which Un

shows that the random variables have uniform distribution on binary sequence set with the length
of n.

233

Trends Applied Sci. Res., 10 (5): 231-244, 2015

Definition 2: Deterministic polynomial-time algorithm G are called pseudo random number
generator if the two conditions will be met (Goldreich, 2004):

C The function l exists that l(n)>n;œn0N and for each s0{0,1}*, we will have: |G(s)| = l(|s|), where
s is called seed

C Ensemble {G(Un)n0N} be pseudo random

Definition 3: Ensemble {Xn}n0N is called unpredictable in polynomial-time, if for each probabilistic
polynomial-time algorithm A and each polynomial p and all sufficiently large n,s (Goldreich, 2004):

(2)     n A n

1 1
Pr A X next X

2 p n
    

The above definitions are not practically possible since all the algorithms should be confirmed.
In the following definitions there seems to be a good association between pseudo random number
generators and statistical tests (Goldreich et al., 1986).

Definition 4: It is said that a pseudo random number generator to pass all the polynomial-time
statistical tests if no polynomial-time algorithm can correctly distinguish between an output
sequence of a generator and the truly random sequence with the same length with probability
significantly greater than .

1

2
In other words, the output of the generator and the truly random sequence with the same

length are computational indistinguishable.
In reference (Goldreich et al., 1986), it is confirmed a generator can be successful in an

unpredictable next bit if and only if becomes successful in all polynomial-time statistical tests.
Lack of success of a generator in any statistical test could be a reason for rejecting that

generator. Although the success of a generator in all of the existing tests could be regarded as a
strength point, however, it cannot be considered as a reason for their being pseudo number.

Evaluating model for pseudo random number generators: In this section, a model for
evaluating pseudo random number generator will be proposed. Investigating theoretical
underpinnings and common methods researches applied during recent years leads to a conclusion
that for general evaluation of a pseudo random number generator, actions must be done in three
dimensions. In fact, a suitable generator should have the following features:

C In applying statistical tests on generators, the random and independence assumption of the
output should not be rejected

C Being resistant against identifiable and appropriate attacks
C Being acceptable with respect to applying and security issues

Accordingly, three subsections will be proposed.

Statistical tests: We can determine whether an output sequence is nonrandom, however, we
cannot confirm that a sequence is random. In statistical tests, we can decide with a determined

234

Trends Applied Sci. Res., 10 (5): 231-244, 2015

measurable probability about whether a generator produces random sequence. Null hypothesis
suggests that the output of a generator is random, that is, it follows independently uniform
distribution or i.i.d. Type one error occurs in a case that we reject the random sequence α = P
(rejected H0|H0 true). According to sample observations, p-value will be calculated and if
p-value<α, the null hypothesis will be rejected and otherwise, the hypothesis will be accepted. The
success of a generator lies in the fact that the H0 will be accepted. Statistical tests could be
conducted in three levels. The first level selects an output sequence from the generator and the test
will be conducted on it. The second level considers m sequences which have n number of bits as
sample of output generators and each test will be conducted on all of sequences. Given that m
independent test are conducted in α level, H0i shows random assumption of ith sequence. Random
variable Bernoulli Xi will be 1 when H0i is accepted. Thus, the variable:

m

i
i 1

Y X




has polynomial distribution with m and 1-α parameters, when each H0i is true. Now, if we indicate
the probability of acceptance of the generator with γ = P(Xi = 1), then the variable:

m

i
i 1

Y X




has polynomial distribution with m and γ parameters. Now, for second test, the hypothesis
H0: γ$1-α has to be tested in a significant α* level. The test statistic, if the null hypothesis is true,
has normal limiting distribution and is shown as following:

(3)
 
 

Y m 1
Z

m 1

 


 

Null hypothesis will be rejected if p value<α* and otherwise, we can accept that the generator
is pseudo random.

The acceptance region for this test shows the minimum acceptable ratio for sequences:

(4)   
*

1
1 Z

m

 
 

For example, in examining m = 1000 sequences for α = 0.01, if the second level test for
α* = 0.0001 was applied, we should have at least 979 sequences to accept the fact that the generator
was pseudo random.

The third level is based on the following lemma.

Lemma 1: If a test statistic were continuous, p value as a random variable has uniform
distribution on [0,1], if the primary hypothesis is true.

Proof: Let a0(0,1) because of continuity in test statistic T, ta number will be:

Pr(T#ta) = a

235

Trends Applied Sci. Res., 10 (5): 231-244, 2015

Now, if we show the random variable p value with p, two inequality p#a and T#ta indicate the
rejection of H0 with the probability of a, so they are equivalent. Pr(T#ta) = Pr(P#ta) = a, so
according to last equality and uniform distribution function, problem has been proofed.

With regards to lemma 1, we can conduct the first level of test for several times and consider
p-value as a random sample of p. Then, by using goodness of fit tests such as Kolmogorov-Smirnov
test and Chi-squared test, we examine the establishment of uniform distribution for p.

It should be noted that for conducting statistical tests, there are identified packages with
different capacities and applications. Examining all of these packages we could find out that the
package which belongs to NIST is more appropriate than others. Provided that the package has the
essential standards, we can introduce a sequence which is obviously nonrandom in a sense that
passes all the tests successfully (Wang and Nicol, 2015). The iterated logarithm test which is based
on the Law of the Iterated Logarithm (LIL) is a tool for reducing the potential type two errors. In
fact, a generator which is confirmed by this test, it will be less likely to produce nonrandom
sequences. This test is called the fourth level for statistical tests.

Iterated logarithmic test: Two famous limit theorems about binary sequences are central limit
theorem and law of the iterated logarithm. A number of NIST tests are based on central limit
theorem but the law of the iterated logarithm has never been used in any tests.

Definition 5: It is said that the sequence ξ does not pass the weak LIL-(α,N*) test successfully if
for any n0N we have:

-1+α<Slil(ξ|n)<1-α (5)

Where:

   n 1

i 0
lil

2 i n
S n

2n ln ln n




 

  

and ξ[i] is the i-th bit of ξ. Further, α0(0,0.25) and N*fN.

Common attacks on pseudo random number generators: Generally, a pseudo random
number generator involves an unpredictable input called seed value and a secret state “S”. The
pseudo random number generator starts with a random state and has to process many seeds to
reach a secure state S. The output should be produced which an attacker S cannot guess. Moreover,
the generator should be able to change its secret state by repeatedly processing inputs (seed).
Figure 1 describes the pseudo random number generators (Kelsey et al., 1998).

One of the features that makes the use of pseudo random number generators in cryptography
distinguished from others is identifying the attacks on these generators and examining the
resistance against them. In an overall view, attack is defined as any method of distinguishing
between pseudo random number generator outputs and truly random outputs (Kelsey et al., 1998).
Nevertheless any attempt in achieving the following goals can be regarded as an attack:

C To learn about the output
C Getting information with respect to input and output
C To manipulate the output

236

Trends Applied Sci. Res., 10 (5): 231-244, 2015

State

Generate
Pseudo-random outputs

Collect

Unpredictable inputs

Fig. 1: PRNG model (Kelsey et al., 1998)

Based on the above definition, a wide range of attacks are identified. The following classification
is done based on the common identified attacks (Kelsey et al., 1998).

Direct cryptanalytic attack: When an attacker can directly distinguish between output
sequences of generator and truly random number sequences, a direct cryptanalytic attack has
occurred. Distinguishing attack is regarded as this type of attack. A large number of generators
apply cryptographic primitives such as hash functions or block ciphers in order to prevent such
attacks.

Input-based attacks: When the attacker can observe the input or manipulate (control) it, an
input-based attack occurs. The goal of the attacker is to reduce the number of outputs in such a way
to make it easy to guess them. In order to prevent this type of attack, it is better to transform the
inputs with an enumerator into a hash function, before transferring them to the generator. The
guess-and-determine and differential attacks are considered as this type of attack.

State compromise extension attacks: When the attacker is able to recover unknown pseudo
random number generator outputs from before S was compromised, this attack occurs. The attacker
tries to develop this knowledge to further points in time and to previous or future output. This
attack usually occurs when the generator starts with insecure mode such as the primary which has
all the elements zero or the selection of seed was from a set available to the attacker. In order to
resist against this attack, enough care must be taken for selecting seed. Meet-in-the-middle attacks
are considered as this type of attack.

Other criteria: In this section, we discussed the criteria which are not examined in statistical test
and cannot be regarded as attacks except for one.

Speed: The expression ‘it is easy to design a secure but very slow cipher’ (Alvarez and Li, 2006)
is well known in cryptography. Thus, attention to speed in evaluating the generators is something
common. Speed becomes significant in proportions because factors such as the structure of CPU,
the memory capacity, platform, optimum coding and programming language affect the speed. For
chaos-based generators, the expected speed should not be slower than 10 Mbps on a 1 GHz-CPU.

237

Trends Applied Sci. Res., 10 (5): 231-244, 2015

Effective implementation: The expression “It is quite easy to design a secure but very large
cipher” (Gonzalo and Li, 2006) is common in cryptography. Thus in evaluating generators, it is
required that we pay attention to the fact that it is better to have a simpler generator and less need
to hardware and software equipments.

Key space: In designing generators, usually it is possible to call the used seeds or initial vectors
as “key”. In current conditions the size of key space for resisting against brute-force attacks should
be at least 2128. The bigness of the size of key space is necessary but not enough because, in
cryptographic perspective, the keys should not be strong and correlated (Francois et al., 2013).

Key sensitivity: The sensitivity on the key is an essential doer for chaos-based generators. The
key sensitivity can be calculated by correlation the outputs which are the result of seeds that are
close to each other. Insignificance of correlation shows high sensitivity. If the test was rejected,
then the correctness of the null hypothesis could be questioned, that is, the generator is not pseudo
random.

Suggested priorities: Applying a variety of criteria is a strength point for the model of evaluating
pseudo random number generators. However, it should be noted that not caring about appropriate
priorities could lead to waste of time and deviation from the main goal.

Thus, the priorities are empirically suggested by comprehensively examining the research
conducted on studying the association and correlation of criteria.

In the following model, if the generator can meet the condition in each level, goes to next level.
Otherwise, evaluation procedure is stopped and the generator is recognized inappropriate for
cryptography points. However, it should be noted that inappropriate recognized generators may
be used for certain applications in special cases.

First step
Speed: The speed of production should be measured for the evaluating generator. If the calculated
speed was more than the criterion mentioned by Alvarez and Li(2006), we could continue the
evaluation, otherwise, we will reject the generator.

Second step
Resistance against the brute-force attack: We measure the size of the key space and if the
criterion were more than 2128, we go to the next step in evaluation and, otherwise, the generator
will be rejected.

Third step
Implementation of statistical tests in the first level NIST: Given to the fact that in some tests
the number of elements under evaluation should be 106, thus, we produce a sequence with the
minimum number of 106 members of the generator and then implement the first level NIST on the
sequence. If random assumption were not rejected with any of the tests, we go to the next step in
evaluation, otherwise, we reject the generator.

Fourth step
Examining the sensitivity: In order to examine the sensitivity of the generator to the key and
initial values, close seeds are selected and we get the output. Then, the correlation of output
sequences will be calculated. Insignificance of correlation between the outputs means that the

238

Trends Applied Sci. Res., 10 (5): 231-244, 2015

sensitivity is to the key is high and the generator will be accepted. Then we go for evaluation to the
next step. In the case of significant correlation between the generators, the generator will be
rejected.

Fifth step
Examining the resistance against attacks: Given to the mentioned attacks in Kelsey et al.
(1998) and the structure of the generator, the resistance against the attacks will be examined and
in the case of success, each generator is rejected. Is the generator were resistant against the known
attacks, we go to the next step in evaluation.

Sixth step
Implementing statistical tests second level NIST: A large number of sequences of generator
were selected as a random sample and these tests will be conducted independently. The ratio of the
accepted sequences is compared by Eq. 4. If for all the NIST tests our ratio was bigger, the
generator is accepted and we go to the next step in evaluation.

Seventh step
Implementing statistical tests the third level NIST: A large number of sequences are selected
from the generator as samples and each test will be independently conducted on them. For each
test a sequence of p value is calculated. Uniform distribution of random variable p is tested and we
can reject the generator if it was rejected.

Eighth step
Implementing the low of iterated logarithm test: Running this test is applied in following
stages (Wang and Nicol, 2015):

C Select testing points such as n = 2t+26 that t = 0, 1,..., 8
C Generate m$10000 sequences and put them in ú set
C Compare the distance between for testing points of first stage. If the distance wasU

n n, 

negligible, accept the generator. For simplicity, let the discrete partition Ω as following set for
the set of real numbers and use these definitions:

{(-4,1),[1,4)}c{[0.05x-1, 0.05x-0.95): 0#x#39}

, that Φ is the standard normal cumulative distribution function and    U
n , x x 2ln ln n   

 that I is any Lebesgue measurable set on R.   n lilI Pr S x I, x ,     
 

Also, for calculating distance this statement, root-mean-square deviation, can be used:

(6)      2U
n nU A

n n

A A
RMSD , 

 
  


 



As Fig. 2 shows, this pattern neither puts the attack criteria like many recourses (Kelsey et al.,
1998, 1999), nor pays no attention to attack like many other recourses (Reyad and Kotulski, 2015;
Babaei and Farhadi, 2011; Ilyas et al., 2013; Hamdi et al., 2015). Also, about statistical tests
intended by all the researchers, our proposed model completes recourses perspectives only
deal with tests (Patidar and Sud, 2009; Ilyas et al., 2013; Hamdi et al., 2015). Furthermore, the

239

Trends Applied Sci. Res., 10 (5): 231-244, 2015

Classical attacks
investigation

Correlation
insignificant?

Sensitivity investigation

Tests pass? A
Pass ratio

expectation

Generator is not good for
cryptography

Start

Speed check

Acceptable?

No

Yes

Brute-force attack
investigation

No

Resistant?

Yes

First level NIST tests

No

Yes

A

No

Yes

A

No

Yes

p uniform
distribution?

Third level NIST test

No
Yes

A

Resistant?

Yes

No

A
Accepted?

No

Yes

A

Second level NIST tests
Generator is not good for

cryptography

A
End

LIL test

Fig. 2: PRNGs evaluation pattern

recourses that only have noted first level of tests can have a precise evaluation too (Walker, 2008;
Babaei and Farhadi, 2011; Ilyas et al., 2013), so this pattern completes their evaluation. Because
of inappropriate generators that success in all 3 levels, as mentioned in recourse (Wang and Nicol,
2015), implementing iterated logarithm test is an important step for reducing second type error
probability that our proposed pattern has focused on it.

RESULTS AND DISCUSSION
First in this section, we presented how generators stop or pass steps of the pattern with

considering various generators. Then a generator will be proposed that can pass most of the steps.

Examples for some steps: For first step 3 generators are evaluated and results are shown in
following table (Table 1). As it is presented in Table 1, Yang’s generator does not have acceptable
speed. So, it is rejected and there is no need to run other steps.

240

Trends Applied Sci. Res., 10 (5): 231-244, 2015

For second step some generators are evaluated and the results shown in Table 2. As it is
indicated in Table 2, first and second generators are rejected because of their small size of key
space (complexity) and there is no need to continue pattern for them.

For third step sensitivity of generators are evaluated and results are shown in Table 3. As it
is shown in this table, second generator can’t pass this step and there is no need to run the other
steps.

For sixth and seventh step, BBS generator can be used which passes the sixth step successfully
but stops at seventh step. It is indicated about some NIST tests in following table (Table 4).

For eighth step some generators have been evaluated and just 2 generators could pass the LIL
test successfully. Table 5, indicates results for this step.

Introducing a good generator: Francois and Defour (2013) proposed a pseudo random generator
with using 3 logistic mapping chaos in 2013. The main idea of their PRBG is to combine several

Table 1: Table speed for speed check
Generators Speed (Mbps) Results
L. Yang (Yang and Jun, 2012) 0.4844 Rejected
G. Alvarez (Alvarez and Li, 2006) 40 Accepted
M. Francois (Francisco and Defur, 2013) 44.112 Accepted

Table 2: Complexity for brute force attack
Generators Complexity Results
A5/1 256 Rejected
DES 256 Rejected
3DES 2168 Accepted
AES256 2256 Accepted

Table 3: Result of NIST test on the sequences obtained from the two generators
M. francois (Francisco and Defur 2013) V. patidar (Patidar et al., 2009)
--- ---

Test names p-value Results p-value Results
Frequency 0.888272 Accepted 0.218594 Accepted
Block-frequency 0.013966 Accepted 1.000000 Accepted
Cumulative sums (1) 0.851269 Accepted 0.343496 Accepted
Cumulative sums (2) 0.723802 Accepted 0.284913 Accepted
Runs 0.239428 Accepted 0.000000 Rejected
Longest run 0.341867 Accepted 0.000000 Rejected
Rank 0.690933 Accepted 0.611764 Accepted
FFT 0.704824 Accepted 0.000000 Rejected
Non-overlapping 0.014372 Accepted 0.000000 Rejected
Overlapping 0.544746 Accepted 0.000000 Rejected
Universal 0.693543 Accepted 0.000000 Rejected
Approximate entropy 0.534042 Accepted 0.000000 Rejected
Random excursions 0.016321 Accepted 0.013588 Rejected
Random Ex-variant 0.014383 Accepted 0.125754 Accepted
Serial (1) 0.532881 Accepted 0.000000 Rejected
Serial (2) 0.508815 Accepted 0.000000 Rejected
Linear complexity 0.956706 Accepted 0.817657 Accepted

Table 4: Status for proportion of passing and distribution pattern
Parameters Test 12 Test 13 Test 14
Expected ratio 0.972766 0.977814 0.983907
Observed ratio 0.983333 0.991667 0.986667
Result Success Success Success
p-value of p-values (POP) 9.157321e-01 8.425709e-07 2.226391e-01
Result Uniform Uniform Non-uniform

241

Trends Applied Sci. Res., 10 (5): 231-244, 2015

Table 5: Law of the iterated logarithm testing results
Generator Results of LIL test
Standard C LCG Fail
MT19937 Pass
PHP LCG Fail
PHP MT19937 Fail
Flawed Debian open SSL Fail
Standard open SSL Pass
LIL: Law of the iterated logarithm (Wang and Nicol, 2015)

chaotic logistic maps and carefully arrange them in the same algorithm in order to increase the
security level. It generates a block of 32 random bits per iteration using the following three logistic
maps:

Xn+1 = 3.9999 Xn (1-Xn) œn$0 (7)

Yn+1 = 3.9999 Yn (1-Yn) œn$0 (8)

Zn+1 = 3.9999 Zn (1-Zn) œn$0 (9)

The evaluation pattern is as follows:

Step 1: The speed performance analysis is achieved on a personal computer with Intel(R) Core(TM)
2 Duo CPU P7350 at 2:00 GHz. The algorithm is implemented using GCC on Fedora release 16
(Verne). Speed of this generator is 44.1120 Mbit/s and indeed the generator could pass this level
successfully.

Step 2: It is generally accepted that a key space of size larger than 2128 is computationally secure
against such attack. In this case, the size of the key space is around 2173, which clearly allows
resisting the brute force-attack.

Step 3: Output of this generator is used as random sample in the first level of NIST and no test
is not rejected. Indeed the generator could pass this level successfully.

Step 4: About 15000 output sequences with close seed are generated for analyzing sensitivity.
Correlation coefficient indicated that this generator is sensitive to seed and initial value and passes
the forth level.

Step 5: Resistance against differential attack and Brute-force attack and guess-and-determine
attack is approved, so it passes fifth step.

Step 6 and 7: Proportion of successful sequences in NIST test showed that the generator was
successful in passing of sixth step. Also, the hypothesis of distribution uniformity of p values based
on observed sequences is accepted. This means that the generator passes seventh step (Francois
and Defour, 2013).

CONCLUSION
Evaluating the pseudo random number generators is essential which needs enough attention.

There are a variety of criteria which are examined holistically in this study. Our suggested model

242

Trends Applied Sci. Res., 10 (5): 231-244, 2015

in three issues of statistical tests, resistance against attacks and security implementing
considerations are emphasized. An extensive discussion was conducted on three statistical tests.
A comprehensive classification for different types of attacks on pseudo random number generators
was proposed. We examined issues related to security and implementing considerations. Some
priorities for applying these models are proposed which can lead to good guideline for one who is
trying to evaluate the generators. With following all steps of this pattern, while a comprehensive
evaluation, the probability of accepting improper generators will be reduced.

REFERENCES
Akhshani, A., A. Akhavan, A. Mobaraki, S.C. Lim and Z. Hassan, 2014. Pseudo random number

generator based on quantum chaotic map. Commun. Nonlinear Sci. Numer. Simul., 19: 101-111.
Alvarez, G. and S. Li, 2006. Some basic cryptographic requirements for chaos-based cryptosystems.

Int. J. Bifurcation Chaos, 16: 2129-2151.
Babaei, M. and M. Farhadi, 2011. Introduction to secure PRNGs. Int. J. Commun. Network Syst.

Sci., 4: 616-621.
Francois, M. and D. Defour, 2013. A pseudo-random bit generator using three chaotic logistic maps.

HAL Id: hal-00785380. https://hal.archives-ouvertes.fr/hal-00785380/document.
Francois, M., T. Grosges, D. Barchiesi and R. Erra, 2013. A new pseudo-random number generator

based on two chaotic maps. Informatica, 24: 181-197.
Gayakwad, R. and P. Ranbir, 2012. A pseudorandom number generator using chaotic image

processing. J. Theoretical Phys. Cryptogr., 1: 6-12.
Goldreich, O., S. Goldwasser and S. Micali, 1986. How to construct random functions. J. ACM.,

33: 792-807.
Goldreich, O., 2004. Foundations of Cryptography. Cambridge University Press, New York.
Hamdi, M., R. Rhouma and S. Belghith, 2015. A very efficient pseudo-random number generator

based on chaotic maps and S-box tables. Int. J. Comput. Control Quantum Inform. Eng.,
9: 481-485.

Ilyas, A., A. Vlad and A. Luca, 2013. Statistical analysis of pseudorandom binary sequences
generated by using tent map. U. P. B. Sci. Bull., 75: 113-122.

James, F., 1990. A review of pseudorandom number generators. Comput. Phys. Commun.,
60: 329-344.

Kang, J.S., 2005. Security frameworks for pseudorandom number generators. Inform. Center Math.
Sci., 8: 1-11.

Kelsey, J., B. Schneier, D. Wagner and C. Hall, 1998. Cryptanalytic Attacks on Pseudorandom
Number Generators. Springer-Verlag, London, UK., ISBN:3-540-64265-X, pp: 168-188.

Kelsey, J., B. Schneier and N. Ferguson, 1999. Yarrow-160: Notes on the design and analysis of the
yarrow cryptographic pseudorandom number generator. Proceedings of the Sixth Annual
Workshop on Selected Areas in Cryptography, Kingston, Ontario, Canada, August 9-10, 1999,
Springer, Berlin, pp: 13-33.

L'Ecuyer, P. and R. Simard, 2007. TestU01: AC library for empirical testing of random number
generators. ACM Trans. Math. Software, Vol. 33. 10.1145/1268776.1268777

Marsaglia, G., 1996. DIEHARD: A battery of tests of randomness. http://www.stat.fsu.edu/pub/
diehard/cdrom/linux/diehard.doc.

Orue, A.B., F. Montoya and L.H. Encinas, 2010. Trifork, a new pseudorandom number generator
based on lagged fibonacci maps. J. Comput. Sci. Eng., 2: 46-51.

243

Trends Applied Sci. Res., 10 (5): 231-244, 2015

Patidar, V. and K.K. Sud, 2009. A novel pseudo random bit generator based on chaotic standard
map and its testing. Electron. J. Theor. Phys., 6: 327-344.

Patidar, V., K.K. Sud and N.K. Pareek, 2009. A pseudo random bit generator based on chaotic
logistic map and its statistical testing. J. Informatical, 33: 441-452.

Reyad, O. and Z. Kotulski, 2015. On pseudo-random number generators using elliptic curves and
chaotic systems. Applied Math. Inform. Sci., 9: 31-38.

Rukhin, A., J. Soto, J. Nechvatal, M. Smid and E. Barker et al., 2010. A statistical test suite for
random and pseudorandom number generators for cryptographic applications. NIST Special
Publication 800-22 Revision 1a, National Institute of Standards and Technology, Gaithersburg,
MD., April 2010, pp: 1-131.

Stoyanov, B. and K. Kordov, 2014. Novel zaslavsky map based pseudorandom bit generation
scheme. Applied Math. Sci., 8: 8883-8887.

Walker, J., 2008. ENT: A pseudo-random number sequence test program.
http://www.fourmilab.ch/random/.

Wang, Y. and T. Nicol, 2015. On statistical distance based testing of pseudo random sequences and
experiments with PHP and Debian OpenSSL. Comput. Secur., 53: 44-64.

Yang, L. and T. Xiao-Jun, 2012. A new pseudorandom number generator based on a complex
number chaotic equation. Chin. Phys. B, Vol. 21.

244

	Trends in Applied Sciences Research.pdf
	Page 1

