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ABSTRACT
This study considers a k-objective time-varying shortest path problem, which cannot be

combined into a single overall objective. In this problem, the transit cost to traverse an arc is
varying over time, which depend upon the departure time at the beginning vertex of the arc. An
algorithm is presented for finding the efficient solutions of problem and its complexity of algorithm
is analyzed. Finally, an illustrative example is also provided to clarify the problem.
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INTRODUCTION
Special form of the bi-criteria path problems was introduced by Hansen (1980). The number of

pareto paths set were defined, where it grew exponentially with the number of nodes set. He solved
the monotone bi-criteria and the bi-objective path problems by using a label setting algorithm. A
multiple label setting algorithm was expanded to generate pareto shortest path by Martins (1984).
Moreover, Corley and Moon (1985) applied the dynamic programming to solve the multi-criteria
shortest path problem. Brumbaugh-Smith and Shier (1989) proposed the linear time algorithm to
solve the bi-criteria shortest path problems. Several algorithm to solve bi-objective multi-model
shortest paths by using bidirectional search were presented by Artigues et al. (2013), where path
viability  constraints  are  modeled  by  a  finite  state  automaton.  A  comprehensive  survey  on
multi-criteria shortest path algorithm is given by Ehrgott and Gandibleux (2002). The reader is
referred to Ahuja et al. (1993), Artigues et al. (2013), Bertsekas (1991), Getachew et al. (2000),
Reinhardt and Pisinger (2011) and Schrijver (2003) for developments in that area.

In time-dependent version of problem, Cooke and Halsey (1966) described the fastest path
problem. Kostreva and Wiecek (1993) extended the research of Cooke and Halsey (1966) to the
multi-criteria case. Getachew et al. (2000) developed the results of Kostreva and Wiecek (1993).
Moreover, they replaced the non-decreasing arc costs constraints by bounds on the cost and relaxed
the time grid constraints. Two-objective function with time dependent data was studied by
Hamacher et al. (2006). The problem called the time-dependent bi-criteria shortest path problem.
Moreover, they reviewed an algorithm proposed by Kostreva and Wiecek (1993), presented a new
label setting algorithm and compared both algorithms numerically. Sha and Wong (2007)
considered  the  best  path  with  multi-criteria  in  time-varying  network,  where  a  transit  time
b (x, y, t) is needed to traverse an arc (x, y). They supposed the time-varying version of the
minimum cost-reliability ratio path problem.
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Consider a time-varying network flow G (V, A, b, cr), r = 1, 2,…, k, where, V is the set of vertices
with *V* = n, A is the set of arcs with *A* = m, b (i, j, t) is a transit time by departure time t at
vertex i, where, (b, i, t) for each arc (i, j) and each time t are positive integers. Assume that each
arc (i, j) is related with k features cr (i, j, t), r = 0, 1,…, k, where, cr (i, j, t), r = 0, 1,…, k are given
arbitrary integers. These features may state costs or other transit factors. We suppose c1 (i, j, t),
c2 (i, j, t),…, ck (i, j, t) are k arbitrary integer transit costs by departure time t at vertex i for
traveling from vertex i to vertex j on arc (i, j).

Consider the network contains no parallel arcs and loops. If the network contains parallel arcs
or self-loops, we can convert it into one with no parallel arcs and self-loops easily. Network
parameters as c and cr are dependent on the time t = 0, 1,…, T, where, T is time horizon to travel
from  source  vertex  s  to  another  vertex  in  network.  Moreover,  T  is  a  positive  integer.  Let
P = (i1 = s, i2,…, il = ρ) be a time-varying path from the source vertex s to the target vertex ρ. The
waiting at any vertex is not allowable. The approach is given in this study holds for the problem
has arbitrary waiting times or bounded waiting times in a similar idea.

Let:

r
r

(i, j) P

(P) c (i, j, t), r 1, 2,..., k


  

Therefore ζr (P), r = 1, 2,…, k are functions of P in terms of k mentioned features. The aim is
to find an optimal path to minimize the k mentioned features ζ1 (P), ζ2 (P),…, ζr (P). Therefore we
want to have:

(1)1 2 k
1 2 kP

(i, j) P (i, j) P (i, j) P

min (P) c (i, j, t), (P) c (i, j, t),..., (P) c (i, j, t)


  

        
  

  

where,  is the feasible paths set on the subject of exist constraints. The problem has k objectives,
then determining an optimal path such that all of the values of ζ1 (P), ζ2 (P),… and ζk (P) are
minimum, may not be possible, so we need efficient solutions for the problem. Problem efficient
solutions are introduced in next section.

This study considers time-varying shortest path problem with k objective functions, where,
waiting times at vertices are not allowable. In section materials and methods, primary definitions
and concepts are presented. This section surveys the k-criteria time-varying shortest path with zero
waiting times, presents an algorithm for solving the problem and surveys its complexity. Section
results presents an example for the mentioned problem.

MATERIALS AND METHODS
In this section, some definitions and operators are introduced, which we will use in algorithm

for finding optimal solution in problem. Then, a theorem is proved for solving the problem. After
that, an algorithm is presented corresponding to theorem.

Definition 1: Consider a time-varying path from i1 to il is denoted by P(i1-i2-…-il). Let α(iq) be
arrival time of a vertex iq on P(i1-i2-…-il) such that α(iq) = tq$0:

α(iq) = α(iq-1)+b(iq-1, iq, τ(iq-1)) for 2#q#l (2)
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where,  w(iq-1)  and  τ(iq-1)  are  waiting  time  value  and  departure  time  of  vertex  iq-1  for  2#q#l
on P(i1-i2-…-il), respectively and we have:

τ(iq-1) = α(iq-1) for 2#q#l

Meanwhile, we let α(s) = 0 for source vertex s.

Definition 2: If P(i1-i2-…-il) be a time-varying path from i1 to il then:

C The time of time-varying path P(i1-i2-…-il) is determined by α(il)-α(i1), if  i1 = s (s is source vertex)
then the time of time-varying path P(i1 = s-i2-…-il) is α(il), particularly

C Time-varying   path  P(i1-i2-…-il)  has  time  at  most  t  if  α(il)-α(i1)#t  and  has  time  exactly
t if α(il)-α(i1) = t

C Corresponding  to  the  arc  features  cr(i,  j,  t),  r  =  0, 1,…, k, the costs of time-varying path
P(i1-i2-…-il) is defined as follow:

ζ 1 (P) = ζ1 (ik) = ζ1 (ik-1)+c1 (ik-1, ik, τ(ik-1))
ζ2 (P) = ζ2 (ik) = ζ2 (ik-1)+c2 (ik-1, ik, τ(ik-1))
. . . .
. . . .
. . . .
ζk (P) = ζk (ik) = ζk (ik-1)+ck (ik-1, ik, τ(ik-1))

Where:

ζr (i1) = 0, r = 0, 1,…, k

It is clear if waiting times are not allowable at any vertices, then:

(3)
r r

r r l r l 1 l 1 l l 1
(i, j) P

(P) (i ) (i ) c (i , i , (i )) c (i, j, t) , r 1, 2,..., k  


        

Definition  3:   A   time-varying   path   P(i1   =   s-i2-…-il   =   j)   is   more   efficient   than   another
P'(i1  =  s-i2-…-il  =  j)  if  ζ1  (P)<ζ1  (P').  If ζ1 (P) = ζ1 (P') then ζ1 (P)<ζ1 (P'),…, also, if ζ1 (P) = ζ1 (P'),
ζ2 (P) = ζ2(P'),…, ζk-1 (P) = ζk-1 (P') then ζk (P)<ζk (P').

Definition 4: A time-varying path P(i1 = s-i2-…-il = j) is most efficient path in the feasible paths
set if there is not any path  such that P' is a more efficient than p., P

Definition  5:  Consider  that  A1  =  {(a11,  a12,…,  a1n),  (a21,  a22,…,  a2n),…,  (ak1,  ak2,…,  akn)}  and
A2 = {(b11, b12,…, b1n), (b21, b22,…, b2n),…, (bk1, bk2,…, bkn)} and A1, A2 are arranged in non-decreasing
order lexicographically. The operator +,, on A1 and A2 is defined as follow:

A = +A1, A2, = {(a11, a12,…, a1n), (b11, b12,…, b1n), (a21, a22,…, a2n),
(b21, b22,…, b2n),…, (ak1, ak2,…, akn), (bk1, bk2,…, bkn)}

where, A is arranged in non-decreasing order lexicographically and keeps all elements in A1, A2.
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Definition 6: Let A1 = {(a11, a12,…, a1n), (a21, a22,…, a2n),…, (ak1, ak2,…, akn)} and (a01, a02,…, a0n).
Then:

C An add operator r is defined as follow:

A1r(a01, a02,…, a0n) = (a11, a12,…, a1n)+ (a01, a02,…, a0n),…, (a01, a02,…, a0n)+ (ak1, ak2,…, akn)

and for A1 = i, we have: A1r(a01, a02,…, a0n) = (a01, a02,…, a0n)
C Eff {A1} is an operator that recognizes all of efficient elements of A1 corresponding order

lexicographically

Note that an operator eff{} can be sorted all of elements A1 in non-decreasing order
lexicographically by k comparison. In the following, a theorem is proved for solving the problem,
first. Then an algorithm is presented corresponding to theorem. Let us introduce the following
definition of t

x.

Definitions 7: Consider P1, P2,…, Pw be w time-varying paths from source vertex s to vertex j with
associated  features  A1 = (ζ1 (P1), ζ2 (P1),…, ζk (P1)), A2 = (ζ1 (P2), ζ2 (P2),…, ζk (P2)),…, Aw = (ζw (P1),
ζw(P1),…, ζw(P1)), respectively. Let  be a efficient path from s to vertex j with time exactly t int

j

which no waiting times are allowed at any vertices, i.e.,  If there is not any t
j 1 2 weff A , A ,..., A . 

path   from   s   to   vertex   j   with  time  exactly  t,  let    moreover  we  definet
j : ( , ,..., ),      

0̄: = (0, 0,…, 0).

Theorem 1:   and  for j0V\{s}. For t>0 and j0V\{s}, we have:0
s 0  0

j  

(4)  t u 1 2 k
j i

{i (i, j) A},{u u b(i, j,u ) t}
eff c (i, j, u), c (i, j, u),..., c (i, j, u)

  

     
 



Proof: By definition, it is simple to see that  and  for j0V\{s}. Second part of the theorem0
s 0  0

j  

is proved by induction on t. For t = 1 the theorem obviously holds. Suppose the formula is correct
for t’ = 1, 2,…, t-1. Consider vertex j. If  then there is nothing to prove, else if  is infinite,t

j ,   t
j

assume  for i and u such that (i, j)0A and u+b (i, j, u) = t, t u 1 2 k
j i c (i, j, u),c (i, j, u),..., c (i, j, u)   

respectively. Notice that b (i, j, u)>0 then u<t, therefore, by induction there is a path P' from source
vertex s to vertex i with time exactly u and efficient path  The path P can be founded byu

i .
extending P' to P by adding arc (i, j), so by u+b (i, j, u) = t, the time of P is exactly t. Now, we proved
there exists a path with time exactly t and efficiency  It is easy to show  is an efficient solutiont

i . t
i

for problem. Consider that i and u are the predecessor of j on path P and the time of the subpath
P' from s to i, respectively. Let ξ(P') be the cost of P'. Since, u+b (i, j, u) = t, then u<t, therefore, by
induction,  By the definition, the cost of P is obtained as follows:  u

iP .  

       1 2 k u 1 2 k
iP P c (i, j, u), c (i, j, u),..., c (i, j, u) c (i, j, u), c (i, j, u),..., c (i, j, u)      

Again, according to the equation:

   t u 1 2 k
i i c (i, j, u), c (i, j, u),..., c (i, j, u) P     
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Then we have must   t
iP .  

The following algorithm can now be presented by using the Theorem 1.

Algorithm efficient path in time-varying shortest path problem with k objectives
Begin

Initialize           0 0 0 0
s 1 2 ks , s ,... s : 0, 0,..., 0 : 0      

 for t>0 and  for 0#t#T and j0V\{s}t
s :   t

j :  
Sort all values u+b(i, j,u) = t for u+0, 1, 2,..., T and for all arcs (i, j)0A;

For t = 1, 2,...,T do
For each (i, j)0A and each u such that u+b(i, j, u) = t, do:

 t u 1 2 k
j i: c (i, j, u), c (i, j, u),..., c (i, j, u)   

t t t
j j j: ,   

 t t
j j: eff  

Let:

t
j

0 t T

*( j) eff
 

 
   

 


End

Theorem 2: Above algorithm can be implemented in O(T2mnC) time, where:

1

(i, j) A, t 0,..., T

C max c (i, j, t)
 



Proof: The initialize step need O(Tn). In next step, to sort u+b(i, j,u) = t, there are mT values to
be sorted, then this step needs O(Tm). Since,  calculation of  merging  with  andt

j nTC,  t
j , t

j
t
j

the number of comparisons  can be done in O(nTC).  Since,  this  step  has  to  perform  for  allt
j

t = 0,1,...,T and all (i, j)0A, it takes in total O(mTnTC) = O(T2 mnC). Finally, the last step of
computing ξ* for all j0V, takes O(Tn) time. Therefore the overall time of algorithm is bounded by
O(T2 mnC).

RESULTS
In this section, a numerical example is examined to illustrate presented algorithm for finding

efficient paths in time-varying shortest path problem, where each arc (i, j)0A is associated with
three attributes cr(i, j, u), r = 1, 2,3..

Consider a time-varying network as shown in Fig. 1, in which no waiting times are allowed at
any vertices. Assume that the time horizon is T = 8 and we have:

C For arc (r, x) and for each t0{0,1,...,8}, let: (b, c1, c2, c3) = (1, 3, 1, 2)
C For arc (r, v) and for each t0{0,1,...,8}, let: (b, c1, c2, c3) = (1, 2, 1, 3)
C For arc (x, v) and for each 0, let: (b, c1, c2, c3) = (1, 3, 2, 4)
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z

xr

s

vw

Fig. 1: A time-varying network for numerical example

Table 1: Transit times b and transit costs c1, c2, c3 for Fig. 1
Arcs (s, r) Arcs (s, w) Arcs (w, x)
--------------------------------------------- --------------------------------------------- -------------------------------------------

t b c1 c2 c3 b c1 c2 c3 b c1 c2 c3

t = 0 1 3 2 2 1 4 2 4 2 2 1 4
t = 1 1 3 3 4 2 3 3 3 1 2 1 3
t = 2 2 4 2 1 1 4 5 1 1 2 3 3
t = 3 1 2 3 3 1 2 3 1 1 3 4 1
t = 4 2 4 3 2 1 2 2 1 2 1 2 4
t = 5 3 2 3 1 2 2 1 2 1 1 4 2
t = 6 1 3 1 3 1 3 2 1 3 2 3 4
t = 7 3 4 1 2 2 3 3 2 3 2 5 1
t = 8 2 3 1 2 1 3 2 3 1 5 2 7

Arcs (w, v) Arcs (x, z) Arcs (v, z)
--------------------------------------------- --------------------------------------------- -------------------------------------------

t b c1 c2 c3 b c1 c2 c3 b c1 c2 c3

t = 0 1 2 1 3 3 3 2 7 4 5 5 1
t = 1 3 3 1 2 2 2 3 4 1 2 7 1
t = 2 1 2 2 2 1 2 2 3 2 3 4 1
t = 3 1 1 1 1 1 3 2 2 2 4 3 2
t = 4 1 1 2 1 1 4 2 1 4 1 1 0
t = 5 1 2 1 1 2 1 2 1 1 6 2 3
t = 6 1 3 2 1 1 2 3 2 1 2 4 5
t = 7 2 4 2 1 1 3 2 5 2 2 2 1
t = 8 2 2 4 6 2 4 4 2 3 3 2 1

Table 2: Calculation of efficient paths for Fig. 1
j
t S r W x v z
0 0̄ 4G 4G 4G 4G 4G
1 4G 3, 2, 1 4, 2, 4 4G 4G 4G
2 4G 4G 4G 6, 3, 4 5, 3, 5 4G
3 4G 4G 4G 4G 9, 5, 8 8, 5, 7
4 4G 4G 4G 4G 7, 3, 6 8, 7, 6
5 4G 4G 4G 4G 4G 13, 8, 10
6 4G 4G 4G 4G 4G 4G
7 4G 4G 4G 4G 4G 4G
8 4G 4G 4G 4G 4G 8, 4, 6
ξ*(j) 0̄ 3, 2, 1 4, 2, 4 6, 3, 4 5, 3, 5 8, 4, 6

The other transit times b (i, j, t) and transit costs (c1, c2, c3) are listed in Table 1.
The results are shown in Table 2, by applying mentioned algorithm. When T = 8, the cost of

efficient path connecting s to z is  by path P(s-r-x-z), moreover this path is efficient path12
z (8, 4, 6) 

because we have:

t 12
z z

0 t 12

*(z) eff
 

 
     

 


283



Trends Applied Sci. Res., 10 (5): 278-285, 2015

We can reach vertex r at t = 1, vertex w at t = 1, vertex x at t = 2, vertex v at t = 2, 3, 4 and
vertex z at t = 3, 4,5, and t = 8, respecting Table 2. Thus, when T = 8, the cost of the shortest path
connecting source vertex s to target vertex z with 3 objectives is (8, 4, 6), where 8, 4 and 6 are
associated with c1, c2 and c3, respectively.

By a back tracking procedure, the shortest path P* = (s-w-v-z) with 3 objectives is obtained,
easily. Moreover, the arrival times of vertices on optimal efficient path P* = (s-w-v-z) are: α(s) = 0,
α(w) = 1, α(V) = 4 and α(Z) = 8. Moreover, the time of P* is 8 and ξ* (P*) = ξ* (z) = (8, 4, 6).

The case of k-objective time-varying shortest path problem with respecting waiting times at
Vertices, has been much less addressed. Getachew et al. (2000) considered the non-decreasing arc
cost assumption by lower and upper bounds on the cost and relaxed the time grid assumption.
Hamacher et al. (2006) were studied time-dependent bicriteria shortest path problems. They
considered two objectives and assumed that travel time to be constant for the duration of travel
along that arc, i.e., they considered the model of travel time is known as a frozen arc model.
Artigues et al. (2013) proposed a bi objective shortest path problem in a multi-modal urban
transportation network. They modeled their problem by a multi-layered network. Moreover, they
considered both the “ minimum time ” and “ minimum number of transfer ” objectives.

This example considers a general model of time-varying network in which the transit times and
transits costs are varying over time. Moreover, the k objectives are varying over time too. The
problem is to find an optimal efficient path from source vertex to target vertex, so that, the total
time of the path is at most T, where T is a given integer horizon time.

CONCLUSION
This study presented k-objective time-varying shortest path problem, where these objectives

cannot combined into a single objective. An algorithm was proposed to handle the situation, where
waiting times at vertices are zero and its complexity was analyzed. The waiting times were
assumed be zero, therefore all waiting costs were considered equal to zero. This assumption can be
relaxed without much difficulty and this algorithm holds for other situations in which waiting times
at vertices are arbitrary or bounded.
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