

Trends in **Applied Sciences** Research

ISSN 1819-3579

ISSN 1819-3579 DOI: 10.3923/tasr.2019.243.253

Mini Review

Telomere Length Variation as Potential Biomarker for Diagnosing Lung, Liver, Gastric and Pancreatic Cancer

Zorawar Singh and Priya Khangotra

Department of Zoology, Khalsa College, 143001 Amritsar, Punjab, India

Abstract

Telomeres present at ends of chromosomes are crucial in maintaining chromosomal integrity and genomic stability. In this review, variation in telomeric length was presented as potential biomarker in diagnosing lung, liver, gastric and pancreatic cancer types by going through available reports. A significant telomere shortening has been found to be associated with Non-small cell lung cancer (NSCLC) cases as compared to control patients (p = 0.027). A positive association between telomere length and survival outcome has been reported in case of squamous cell carcinomas in early stage NSCLC patients. Many studies reported the association of several single nucleotide polymorphisms and liver cirrhosis that may in turn become the main risk factor for liver cancer. Moreover, telomere shortening has been presented as a genetic risk factor for liver cirrhosis. Gastric cancer risk has been found to elevate with *Helicobacter pylori* L. infections which may involve telomere shortening mediated by over production of reactive oxygen species. Leucocyte telomere length and TERT gene variants were found to be associated with pancreatic cancer risk, but some studies found no associations between genetically predicted short telomeres and pancreatic ductal adenocarcinoma risk. Human telomerase reverse transcriptase plays an important role in telomere lengthening and has been found to be involved in different cancer propagatory mechanism. A wide group of studies revealed alteration in telomere length to be an accurate cancer biomarker though further associative studies are recommended.

Key words: Human telomerase, telomere shortening, genomic stability, cancer biomarker, non-small cell lung cancer, chromosomal integrity

Citation: Zorawar Singh and Priya Khangotra, 2019. Telomere length variation as potential biomarker for diagnosing lung, liver, gastric and pancreatic cancer. Trends Applied Sci. Res., 14: 243-253.

Corresponding Author: Zorawar Singh, Department of Zoology, Khalsa College, 143001 Amritsar, Punjab, India Tel: +91-9417230075

Copyrig ht: © 2019 Zorawar Singh and Priya Khangotra. This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

INTRODUCTION

Cancer biology has emerged as a much explored branch in recent years 1,2. Main emphasis in these studies has been laid down on the mechanisms involved and drug delivery systems^{3,4}. Besides this, accurate diagnosis of a particular cancer type is a field of extreme importance. One of the biomarkers used in case of cancer diagnosis is the alteration in telomere length. Telomeres are TTAGGG tandem repeats present at each end of chromosomes⁵. Nucleotide sequence of telomeres is repeated nearly 2000 times. Telomeres help in protecting the genome from inter-chromosomal fusions and degradation⁶. Thus, these sequences safeguard the stability of chromosomes as well as the full genome. Any kind of alteration in the length of telomere may hamper their role. Increased smoking, higher stress levels and elevated oxidative stress levels may result in decreased telomere lengths⁷. The maintenance of telomere length is attributed to telomerase activity. Any irregularity in its function may result in instability among the genome that may further lead to risk of cancer. Short as well as extremely long telomeres have been found associated with different cancer types. Telomeric shortening is also found to be associated with various disease patterns including Dyskeratosis Congenita and Parkinson's disease^{8, 9}. Maintenance of a proper telomere structure, an accurate regulation of telomerase biogenesis and activity, as well as a correct telomere-telomerase interaction and a faithful telomeric DNA replication are all processes that a cell has to precisely control to safeguard its functionality¹⁰, but a faulty telomerase action may result in genomic instability that may lead to cancer. In the present paper, an attempt had been made to compile and present the studies reporting the association of telomere length alteration with different cancer types including lung, liver, gastric and pancreatic cancer.

LUNG CANCER

Lung cancer remains the leading cause of cancer mortality worldwide¹¹. Phenyl phenanthro imidazole ethylenediamine platinum (II) (PIP) has been reported to notably suppress the seeding capacity of A549 lung cancer cells¹². It also induced telomere shortening in lung cancer, but similar results were not found in case of MRC5 cells. Similarly, in another study of Taka *et al.*¹³, treatment of A549 lung cancer cells with perylene derivatives PM2 and PIPER influences the G-quadruplex by reduction in cell proliferation and tumorigenicity. Cell declining was observed when treated for longer duration. Welders (N = 101) were exposed to respirable

dust at 1.2 mg m⁻³, whereas control exposures did not exceed to 0.1 mg m⁻³ (p<0.001). Welders showed excessive possibility of adenomatous polyposis coli (APC) methylation in unadjusted model (odd ratio = 14, p = 0.014) than in adjusted model (p = 0.052). The TL of welders was found associated with 0.0066 units shorter telomeres (p = 0.033). There was no clear association between concentrations of respirable dust and the biomarkers¹⁴. Association between ACYP2 SNPs and lung cancer risk in the Chinese Han population were investigated and a total of 554 lung cancer patients and 603 healthy controls; 13 SNPs in ACYP2 were included¹⁵. To evaluate the association between SNPs and lung cancer, multivariate logistic regression analysis was used. As a result, three SNPs in ACYP2 viz. rs1682111 in the recessive model (p = 0.029), rs11896604 in the co-dominant model (p = 0.045) and over-dominant model (p = 0.032) and rs843720 in recessive model (p = 0.040) were found to be associated with increased lung cancer risk in Chinese Han population.

Non-small cell lung cancer: Non-small cell lung cancer (NSCLC) accounts for about 85% of all lung cancers. Potential clinical use of telomeres and telomerase activity in SCLC was investigated¹⁶. Telomere shortening was found more in tumours than in control tissues (p = 0.027). Patients whose tumours had a mean telomere length (MTL) <7.29 Kb or T/N ratio < 0.97 showed a significantly poor clinical evolution (p = 0.034 and 0.040, respectively). Thus, telomere function may emerge as a useful molecular tool that allows selecting groups of NSCLC patients in order to establish personalized therapy protocols. Similarly, effect of short telomeres on the survival of patients with early stage of NSCLC was investigated¹⁷. The correlation between TL and overall survival (OS) and disease-free survival (DFS) was explored. When the patients were categorized into quartiles based on TL, those patients with the 1st quartile (shortest) of TL had a significantly worse OS and DFS than patients with the 2nd to the 4th quartiles of TL (p = 0.001 and 0.01, respectively). Therefore, the association between TL and survival outcome was more pronounced in squamous cell carcinomas than adenocarcinomas. Another study found that NSCLC is susceptible to increasing of DNA damage responses and prohibition of angiogenesis by telomere overhang oligonucleotides¹⁸. Single-nucleotide polymorphisms (SNPs) were presented to show significant correlation with NSCLC in a few sub-populations which included women, non-smokers, east Asians and subjects with adenocarcinoma¹⁹. The genetic alleles combined with

environmental (e.g., less-smoking) and physiological factors (gender and age) that confer longer telomeres are the strong risk factors for NSCLC. The effect of Cynomorium songaricum polysaccharide (CSRP) on telomere of A549 human non-small cell lung cancer cells was investigated²⁰. The CSRP was found to have the anti-cancer effect. The action mechanism may be linked with preventing TERT mRNA expression, telomere shortening, preventing cell proliferation and stimulating cell apoptosis. Long telomeres have been found in correlation with recurrence in early stage NSCLC after curative resection²¹. This prospective study demonstrated that women had long telomeres as compared to men (1.12 vs. 1.06, p = 0.025) and the patients of adenocarcinoma had longer telomeres than those of other histologic types (1.11 versus 1.05, p = 0.042). Long RTL was related to increased recurrence risk in women (p = 0.044) and adenocarcinoma sub-groups (p = 0.036). Similarly, longer telomeres were found more in adenocarcinoma patients and less in Squamous Cell Carcinoma (SCC) patients as compared to controls²². Longer telomeres were found related with adenocarcinoma risk, with highest risk related to female sex, younger age (<60 years) and lighter smoking (<30 pack-years). Genetic variation in chromosome 5p 15.33 and TL have been reported in a systematic review to be predictive and prognostic biomarkers for lung cancer¹¹. The 23 genetic variants found significant associations with overall survival (OS) and/or progression-free survival (PFS) were reported for rs401681 (CLPTM1L), rs4975616 (TERT-CLPTM1L) and rs2736109 (TERT). In tumor and blood, both shorter and longer TLs were found to be associated with OS and PFS. Correlation of telomere shortening with lung cancer risk was reported by Karimi et al.²³. In 9 studies, 2925 cases of lung cancer and 2931 controls were employed. A meta-analysis revealed that lung cancer cases were expected to have shorter telomeres as compared to controls (p = 0.46) and the summary of pooled ORs of TL in adenocarcinoma lung cancer patients was 1 as compared to 1.78 for squamous cell lung cancer patients. Lung cancer risks are reported to be clearly related with short TL. In patients with breathing problems, lung cancer risk can be predicted by TL adjustment with age, sex and smoking. The TL in T-cells and its correlation with the clinical characteristics patients with lung cancer was of investigated²⁴. The study included 40 patients of lung cancer and 25 controls. Telomere lengths were assessed by using quantitative real-time polymerase chain reaction methods. Hence, the results showed that telomere shortening was found more in patients as compared to controls (p<0.001) and shorter telomeres were associated with induced clinical stage (p = 0.008) and distant metastasis (p = 0.028).

Shortened telomeric length in T-cells was found in naive T-cells which might be related to lung cancer progression as naive T-cells in lung cancer patients had short telomeres than in controls (p = 0.012). It was suggested that long telomeres in peripheral white blood cells are correlated with lung cancer risk while studying the rs2736100 (CLPTM1L-TERT) polymorphism in a prospective cohort study among women in China²⁵. A total of 215 female lung cancer cases and 215 controls were investigated. About 94% of recruited cases were never-smokers. A dose-response relationship between tertiles of TL and risk of lung cancer were found (p trend = 0.003). The study suggested that individuals with longer TL in peripheral white blood cells may have an increased risk of lung cancer. Correlation of seven telomere-length associated genetic variants with increased risk of lung cancer was explored in a large study of 5,457 non-smoking female Asian lung cancer cases and 4,493 non-smoking female Asian controls²⁶. Genetic risk scores (GRSs) of seven TL associated variants revealed that longer telomeres were related with increased lung cancer risk for upper versus lower quartile of the weighed GRS (p = 4.54×10^{-14}), even after removing rs2736100 (p = 4.81×10^{-3}).

Telomere length variation (TLV) in blood lymphocytes has been reported in correlation with lung cancer risk²⁷. About 191 lung cancer cases and 207 controls were undertaken in the study. The TLV across all chromosomal ends were found to be significantly related with risk of lung cancer; adjusted odds ratios 4.67 and 0.46 for younger (age</ = 60) and older (age >60) individuals. Lung cancer risk was found affected by both TLV and mean TL. When individuals with short telomeres and elevated TLV were compared with long telomeres and reduced TLV, adjusted odd ratios were found to be 8.21 and 0.33 for younger and older individuals, respectively. Another study presented 3D telomere profiles in differentiating NSCLC patients with different histologies, EGFR and smoking statuses²⁸. The study investigated the 3D organization of telomeres and cytoband 17q25.3 copy number in NSCLC tissues. Cytoband 17g25.3 was examined by fluorescent in situ hybridization. The 3D telomeric profiling revealed that the smokers, EGFR-negative and squamous cell carcinoma sub-groups had higher numbers of low-intensity telomeres which are indicative of shorter telomeres. Profiling also showed higher numbers of telomeric aggregations compared non-smokers, EGFR-positive adenocarcinomas. G-quadruplex ligands were demonstrated to attenuate telomerase activity by inducing G-quadruplex formation at the 3'-overhang of telomere and at the human telomerase reverse transcriptase (hTERT) promoter¹³.

Trends Applied Sci. Res., 14 (4): 243-253, 2019

Table 1: Studies reporting the association of telomere length alterations with different cancer types

Type of cancer	Inference	References
ung cancer	PIP suppressed the seeding capacity of A549 lung cancer cells and induced telomere shortening	Mancini <i>et al.</i> ¹²
ung cancer	Telomere shortening and cell senescence induced by perylene derivatives (PM2 and PIPER) in	Taka <i>et al.</i> ¹³
	A549 human lung cancer cells	
ung cancer	Modest signs of association between oxidative stress, telomere alterations, DNA methylation and	Li <i>et al.</i> ¹⁴
	low-to-moderate occupational exposure to particles from welding fumes	
ung cancer	Positive correlation between three SNPs in telomere associated gene ACYP2	Chen <i>et al.</i> ¹⁵
	(rs1682111, rs11896604 and rs843720) with lung cancer risk	
ung cancer	TL, COPD and emphysema as risk factors for lung cancer	De-Torres <i>et al.</i> ³²
ung cancer	Telomere shortening was found more in tumours than in control tissues ($p = 0.027$)	Fernandez-Marcelo <i>et al.</i> ¹⁶
ung cancer	Continuous long-term treatment with imetelstat resulted in sustained telomerase inhibition,	Frink <i>et al.</i> ³³
	progressive telomere shortening and eventual growth inhibition	
ung cancer	An association between TL and survival outcome was more pronounced in squamous cell	Jeon <i>et al.</i> ¹⁷
	carcinomas than adenocarcinomas	Ka ah a4 a/11
ung cancer	Genetic variation in chromosome 5p15.33 and TL is predictive and prognostic biomarkers for	Kachuri <i>et al.</i> ¹¹
	lung cancer	V-vi-vi - 4 - 123
ung cancer	Patients with lung cancer were expected to have shorter TL than the control (p = 0.46)	Karimi <i>et al.</i> ²³
ung cancer	Longer telomeres were significantly associated with higher risk of developing recurrence	Kim <i>et al.</i> ²¹
	in women	1 125
ung cancer	Individuals with longer TL in peripheral white blood cells may have an increased risk of	Lan <i>et al.</i> ²⁵
una cancar	lung cancer	Machiela et al?6
ung cancer	A genetic background that favours longer TL may increase lung cancer risk	Machiela <i>et al.</i> ²⁶
ung cancer	Exogenous administration of an 11-base oligonucleotide homologous to the 3'-telomere	Puri <i>et al.</i> ¹⁸
	overhang sequence (T-oligo) mimics the effects of overhang exposure by inducing senescence	
una cancar	and cell death in NSCLC cells	Oian at a ¹²⁴
ung cancer	Shortened TL in T-cells occurred in naive T-cells and might be related to lung cancer progression	Qian <i>et al.</i> ²⁴
ung cancer	Long telomeres were associated with increased risk of adenocarcinoma, with the highest	
	risk associated with female sex. In contrast, long telomeres were protective against squamous	Complementarial and at a 177
	cell carcinoma	Sanchez-Espiridion et al. ²²
ung cancer	Longer TL was associated with increased lung cancer risk	Seow <i>et al</i> . ³⁴ Sun <i>et al.</i> ²⁷
ung cancer	TL variation in blood lymphocytes is significantly associated with lung cancer risk.	
ung cancer	3D telomere profiles may differentiate NSCLC patients with different histologies, EGFR,	Sunpaweravong <i>et al.</i> ²⁸
ung cancer	and smoking statuses. Perylene derivatives induced telomere shortening and cell senescence in A549 human	Taka <i>et al.</i> ¹³
urig caricer	lung cancer cells	iaka Et al.
ung cancer	Support vector machine (SVM) model and a decision tree (DT) model were developed	Wang <i>et al.</i> ³⁵
ung cancer	for screening lung cancer through combined detection of FHIT, RASSF1A and p16 promoter	wang et al.
	methylation and RTL.	
ung cancer	SNP (rs2736100) showed a significant correlation with longer telomeres and NSCLC	Wei <i>et al.</i> ¹⁹
ung cancer	Cynomorium songaricum polysaccharide could significantly shorten the TL of A549 cells	Yang <i>et al.</i> ²⁰
urig caricer	demonstrating its anti-cancer nature.	rang et al.
iver cancer	Telomere shortening may represent a genetic risk factor for the development of cirrhosis	Carulli ²⁹
iver cancer	HOTAIR is required for IKKalpha plus IKKbeta and IKKgamma to control telomerase activity and TL	An <i>et al.</i> ³⁰
iver cancer	Peripheral blood samples may be utilized to assay telomere shortening as a predictor for	Feng <i>et al.</i> ³¹
iver carreer	disease persistence in HCC resulting after HBV or HCV infection	reng et al.
iver cancer	HULC, MALAT1 and TRF2 are highly expressed in HCC tissues, HULC plus MALAT1 over expression	Wu <i>et al.</i> ³⁶
iver caricer	drastically promotes the growth of liver cancer stem cells through telomere elongation	vvu et al.
iver cancer	Proposed a strategy using nuclear-shell biopolymers initiated by telomere elongation with signal	Zhang <i>et al.</i> ³⁷
iver caricer	molecules for selective cancer cell recognition and efficient drug delivery	Zhang et al.
astric cancer	Helicobacter pylori infection attenuated TL and increased gastric cancer risk	Lee <i>et al.</i> ³⁸
astric cancer	Positive correlation found between <i>Helicobacter pylori</i> related PCGI methylation and telomere	Tahara <i>et al.</i> ³⁹
iastric caricer	shortening in human gastric mucosa	Tallala et al.
actric cancor	Telomere shortening in gastric mucosa was associated with increased GC but not with	Tahara <i>et al.</i> ⁴⁰
iastric cancer		Tallala et al.
actric cancor	clinicopathological features	Chai at 2/41
astric cancer	Positive correlation of the rs2736100 A allele carrier with decreased hTERT mRNA expression and telomere shortening	Choi <i>et al.</i> ⁴¹
actric cancor	, and the second se	Du <i>et al.</i> ⁴²
astric cancer	Shorter or extreme longer telomeres may be risk factor for gastric cancer	
astric cancer	Positive correlation was found between TL and PIK3CA amplification	Heo <i>et al.</i> ⁴³
astric cancer	Associations observed between TL and mtDNA copy number in intestinal type gastric cancer	Jung <i>et al.</i> ⁴⁴
Sastric cancer	samples but not in diffuse type GC Haplotypes "TTCTAATG" and "AC" were more frequent among GC patients. Haplotype "GC" is	Li at 2/45
	napiotypes i i Ciaato and ac were more requent among GC patients, hapiotype "GC" Is	Li <i>et al.</i> ⁴⁵

Table 1: Continued

Type of cancer	Inference	References
Gastric cancer	Trastuzumab induces Oxa and DDP sensitivity in HER2-amplified GC cells and downregulate the	Liu <i>et al.</i> ⁴⁶
	telomere-associated gene expression	
Gastric cancer	Short LTL is associated with induction of gastric or esophageal squamous cell carcinoma	Pan <i>et al.</i> ⁴⁷
Gastric cancer	Increased immunosuppressive status in response to short leukocyte RTL	Qu <i>et al.</i> ⁴⁸
Gastric cancer	Potential correlation found between telomere shortening in leukocyte DNA and	Tahara et al.49
	clinic-pathological features and prognosis of gastric cancer	
Gastric cancer	Telomere shortening in gastric mucosa is associated with GC risk	Tahara et al.40
Gastric cancer	GKN1 increases senescence and apoptosis through regulating TL in gastric cancer	Yoon <i>et al.</i> ⁵⁰
Pancreatic cancer	Telomere shortening occurs in the early stages of pancreatic carcinogenesis and progresses with pre-cancerous development	Matsuda <i>et al.</i> ⁵¹
Pancreatic cancer	No correlation of genetically predicted short telomeres with PDAC risk was found	Antwi <i>et al.</i> ⁵²
pancreatic cancer	A positive correlation was identified between the minor allele of rs401681 and telomere	Bao et al. ⁵³
	shortening (p = 0.023); shorter pre-diagnostic LTL was correlated with increased pancreatic cancer risk (p = 0.048)	
Pancreatic cancer	A weakly positive correlation between longer LTL and pancreatic cancer risk	Campa <i>et al.</i> ⁵⁴
Pancreatic cancer	Positive correlation of longer LTL with pancreatic cancer risk was observed	Lynch et al. ⁵⁵
Pancreatic cancer	Short telomeres and extremely long telomeres in PBL are associated with pancreatic cancer risk.	Skinner <i>et al.</i> ⁵⁶
Pancreatic cancer	Peripheral LTL and TLV were associated with increased pancreatic cancer and CRC risks.	Zhang et al.57

ACYP2, Acylphosphatase 2; COPD: Chronic obstructive pulmonary disease, CRC: Colo-rectal cancer, DT: Decision tree, DNA: Deoxyribonucleic acid, ESCC: Esophageal squamous cell carcinoma, EGFR: Epidermal growth factor receptor, FHIT: Fragile histidine triad, GC: Gastric cancer, GKN1: Gastrokine 1, HLCC: Human lung cancer cell, HER2: Human epidermal growth factor receptor 2, HCC: Hepatocellular carcinoma, HBV: Hepatitis B virus, HCV: Hepatitis C virus, HULC: Highly upregulated in liver cancer, hTERT: human telomerase reverse transcriptase, LTL: Leukocyte telomere length, mRNA: messenger ribonucleic acid, mtDNA: mitochondrial deoxyribonucleic acid, MALAT1: Metastasis-associated lung adenocarcinoma Transcript 1, NSCLC: Non-small cell lung cancer, PIP: Phenylphenanthroimidazole ethylenediamine platinum (II), PCGI: Promoter CpG island, PIK3CA: Phosphatidylinositol-4,5-bisphosphate 3-kinase Catalytic subunit Alpha, PDAC: Pancreatic ductal adenocarcinoma, PBL: Peripheral blood leukocyte, RTL: Relative telomere length, RASSF1A: RAS associated domain family 1, SNPs: Single nucleotide polymorphism, SCCs: Squamous cell carcinomas, SVM: Support vector machine, TL: Telomere length, TRF2: Telomere repeat-binding factor, TLV: Telomere length variation

Study showed that perylene derivatives PM2 and PIPER can induce G-quadruplex formation from both telomeric DNA and the hTERT promoter region *in vitro*. Thus, perylene derivatives are strong contenders as effective agents for cancer therapy. The data in Table 1 showed the studies reporting the association of telomere length alterations with different cancer types.

LIVER CANCER

Cirrhosis may become the main risk factor for liver cancer prolongation. Liver cirrhosis was shown to affect liver function and liver transplantation is the only possible treatment to decrease the mortality at the end stage of cirrhosis²⁹. It has been seen that majority of patients who are suffering from the liver injury had some common factors including viral hepatitis, alcohol consumption and fatty liver disease. The pathogenesis of liver cirrhosis is not completely clarified. The association of telomere shortening and cirrhosis have been reported in many previous studies. Recent studies have demonstrated the relation between several single nucleotide polymorphism (SNPs) and liver cirrhosis. Recently, telomere shortening has been presented as a genetic risk factor for liver cirrhosis. Another study investigated the oncogenic action of IKKalpha, IKKbeta and IKKgamma which are components of IKK, a

protein kinase³⁰. It was demonstrated that IKKalpha plus IKKbeta enhanced liver cancer stem cell growth *in vitro* and *in vivo* whereas IKKgamma prevented it. HOTAIR is required for IKKalpha plus IKKbeta and IKKgamma to control telomerase activity and TL. HOTAIR handles the action of IKKalpha, IKKbeta and IKKgamma in liver cancer stem cells. A small series of highly defined patients and matched timed peripheral blood samples (PBS) as well as paired liver biopsies from patients with diagnosed hepatocellular carcinoma (HCC) were examined³¹.The study reported that PBS may be utilized to assay telomere shortening as a predictor for disease persistence in HCC resulting after HBV or HCV infection, but not in non-infectious cause-stimulated HCC.

GASTRIC CANCER

Helicobacter pylori L. infection caused chronic gastritis and raises gastric cancer risk³⁸. Another study demonstrated that telomere shortening may be a result of *H. pylori* infection in inflammatory gastric mucosa³⁸. Gastric biopsy specimens were procured from 20 patients with chronic gastritis or peptic ulcer caused by *H. pylori* infection. Specimens showed induced NF-kappaB and superoxide dismutase activities and elevated expressions of PARP-1 and gamma-H2AX. All the parameters returned to normal levels after *H. pylori*

treatment. Telomere shortening was suggested to be caused by inflammation mediated overproduction of reactive oxygen species and PARP-1. Another study confirmed the correlation of telomere shortening in gastric mucosa with an increased GC risk⁴⁰. A total of 217 GC patients and 102 subjects without GC were included in the study. Real-time PCR was used to measure RTL which decreased gradually in *H. pylori* negative and positive gastric mucosa of GC free subjects compared to adjacent mucosa and cancer tissue from GC patients (p<0.0001). Telomere shortening was found more often in non-neoplastic mucosa of GC patients as compared to GC free subjects (p<0.0001). Similarly, the potential link between H. pylori related PCGI (promoter CpG island) methylation and telomere shortening in gastric mucosa was examined³⁹. About five PCGIs were identified that were closely associated with H. pylori infection. Multivariate analysis revealed that telomere shortening increased hyper-methylation risk (p = 0.016).

GENETIC VARIANTS

Various genetic polymorphisms and variants have been investigated for their possible associations with GC risk. Influence of the hTERT rs2736100 polymorphism on TL in gastric cancer has been reported⁴¹. The relationship between rs2736100 polymorphism and the risk of gastric cancer were examined in 243 GC patients and 246 healthy individuals. The rs2736100 A allele carrier was found to be closely associated with reduced hTERT mRNA expression and shortened TL in GC tissue and cell lines. A study reported senescence and apoptosis induced by Gastrokine 1 (GKN1) via regulating TL and telomerase activity in gastric cancer⁵⁰. In AGSGKN1 and MKN1GKN1 cells, telomerase activity, hTERT expression and TL were found to be significantly reduced. Moreover, GKN1 caused senescence and apoptosis through up-regulation of p53, p21, p27 and p16 proteins and down-regulating SKp2. The TL in 35 gastric cancers was shortened significantly compared with the corresponding gastric mucosae. On the contrary, GKN1 expression was inversely associated with TL and c-myc and hTERT mRNA expression. A case-control study was conducted including 1136 gastric cancer cases and 1012 controls to find the link between TL, TL-related genetic variants in Caucasians and risk of gastric cancer in Chinese population⁴². A U-shaped association was observed between TL and GC risk (p < 0.001) with odds ratios of 3.81 (2.82-5.13), 1.65 (1.21-2.26), 1.28 (0.93-1.77) and 1.78 (1.30-2.44) for individuals in the first (the shortest), second, third and fifth (the longest) quintile as compared to those in the fourth quintile as reference group. These findings suggested that either short or extreme long telomeres may be risk factor for gastric cancer.

Correlation between TL and mitochondrial DNA copy number in intestinal and diffuse type GC samples was examined44. Statistically significant correlation was identified in intestinal type GC samples (r = 0.461; p<0.001), but not in diffuse type GC (r = 0.225; p = 0.260) which indicated that loss of the correlation of telomeres and mitochondrial function may induce the initiation or progression of gastric cancer. The association between single nucleotide polymorphisms (SNPs) in ACYP2 gene and gastric cancer risk in the northwest Chinese Han population was investigated⁴⁵. About 302 GC cases and 300 controls were recruited from northwest China and 13 SNPs from ACYP2 gene were selected. The results revealed that the haplotypes "TTCTAATG" (rs1682111, rs843752, rs10439478, rs843645, rs11125529, rs12615793, rs843711 and rs11896604) and "AC" (rs843706 and rs17045754) were found to be more frequent among patients with GC. The haplotype "CG" has been suggested to have protective role in the GC risk (p<0.05). Similarly, HER2 amplification occurred in more than 20% of gastric cancer cases⁴⁶. A study evaluated the combined antitumor efficacy of trastuzumab and various platinum agents in GC cells and the mechanisms involved. The apoptotic effect of the platinum agents on GC cells was observed by double-staining with Annexin V-fluorescein isothiocyanate and propodium iodide. Results indicated the potential role of low-dose trastuzumab administration for increasing oxaliplatin and cisplatin sensitivity in HER2-amplified GC cells⁴⁶.

Association of TL in peripheral blood leukocytes with GC risk or oesophageal squamous cell carcinoma (ESCC) in a Chinese Han population was investigated⁴⁷. A total of 574 GC cases, 740 ESCC cases and 774 age and sex-matched healthy controls were included in the study. Shorter RTL was found more in GC or ESCC patients (GC: 1.20 ± 0.42 ; 1.27 ± 0.48) as compared to controls (1.41 ±0.58). An increasing association between short RTL and smoking in increasing GC (p = 4.50×10^{-9}) or ESCC (p = 5.93×10^{-33}) risks were also observed. Short TL might be a potential molecular marker to identify high-risk individuals⁴⁷. Another study demonstrated that telomere shortening in peripheral blood leukocyte is an independent prognostic marker complementing TNM (Tumor, Nodes and Metastases) stage and correlated with an immunosuppressive phenotype in GC patients ⁴⁸. Patients with shorter RTL were found to have worse overall survival and relapse-free survival than those with long RTL in all patient sets. Patients with short RTL also had a higher CD₄₊ T-cell percentage in PBMCs (Peripheral blood mononuclear cell), CD+₁₉ IL-¹⁰⁺ Breg percentage in B-cells and plasma IL-¹⁰ concentration showing an increased immunosuppressive status with short leukocyte RTL. Similarly, the potential association between telomere shortening in the leukocyte DNA, clinic-pathological features and prognosis of gastric cancer in 207 Japanese GC patients was evaluated using quantitative real time polymerase chain reaction (PCR)⁴⁹. Short-telomere group was significantly associated with advanced stage (p = 0.015) and worse overall survival (OS). Telomere shortening in leukocyte DNA was found associated with advanced stage and poor prognosis of GC which may reflect their reduced immune response.

PANCREATIC CANCER

Chromosomal instability and telomere shortening in the pancreatic duct epithelium have been reported to be associated with carcinogenesis of the pancreas⁵¹. The associations of TL and pancreatic cancer risk have been reported⁵⁸. On the contrary, no correlation of genetically predicted short telomeres with pancreatic ductal adenocarcinoma risk was found⁵². Leucocyte telomere length (LTL) and genetic variants at the TERT gene region were found related to pancreatic cancer risk⁵³. In this study included a total of 386 cases and 896 controls, revealing the association between short LTL and increased pancreatic cancer risk (p = 0.048). Three SNPs at TERT (linkage disequilibrium r2<0.25) including rs401681 (p = 0.002), rs2736100 (p = 0.001) and rs2736098 (p = 0.002) were found associated with pancreatic cancer risk. A positive correlation was identified between the minor allele of rs401681 and telomere shortening (p = 0.023). In a prospective study, a total of 331 cases and 331 controls were included and the results revealed that LTL was more in cases (0.59 ± 0.20) as compared to controls (0.57 ± 0.17) and a weakly positive correlation between longer LTL and pancreatic cancer risk was observed. The results of the study do not support LTL as a uniform and strong predictor of pancreatic cancer⁵⁴. Another prospective study suggested a positive correlation of longer LTL with induced pancreatic cancer risk (p = 0.007)⁵⁵. Another study by Mormile⁵⁹ also suggested the associations of TL and pancreatic cancer risk.

Telomere shortening in peripheral blood leukocytes (PBL) has been found in association with pancreatic cancer risk. Conflictingly, extreme long telomeres may also be associated with it⁵⁶. Another study suggested that LTL and TLV have

associations with increased pancreatic cancer and colorectal cancer (CRC) risks in Chinese population⁵⁷. About 900 pancreatic cancer cases, 300 CRC cases and 900 controls were included in the study. Both cases with longer LTL (p = 0.004) and shorter LTL (p = 8.50×10^{-6}) showed higher pancreatic cancer risks. The TLV was found to be associated with increased pancreatic cancer risk (p = 0.006).

ROLE OF HUMAN TELOMERASE REVERSE TRANSCRIPTASE (hTERT)

Telomerase is expressed in early human development and then becomes silenced in most normal tissues⁶⁰. Human telomerase reverse transcriptase (hTERT) plays a central role in telomere lengthening for continuous cell proliferation, but it remains unclear how extracellular cause regulate telomerase lengthening of telomeres. Young human cells with long telomeres have been reported to show repressed hTERT epigenetic status, but this status is altered when telomeres become short. This change correlated with altered expression of TERT and genes near to TERT⁶⁰. Various researches reported involvement of hTERT in telomere alteration⁶¹⁻⁶⁵. The Table 2 depicted the studies reporting the association of hTERT with telomere length alterations.

hTERT expression was found to be significantly higher in tissue from cancer-adjacent polyps (CAP) in comparison to cancer-free polyps (CFP) (p = 0.05). Interestingly, CAP tissues had shorter telomeres and polyp TLs of aggressive CAPs were significantly different from the polyps of non-aggressive CAPs, $(p = 0.01)^{66}$. Bone Morphogenetic Protein-7 (BMP7) has been reported to increase telomere shortening and cell aging by involving BMPRII receptor and Smad3- mediated repression of the hTERT gene⁶⁷. In a recent study, quantitative PCR identified hTERT promoter mutation in 36% of patients with HNSCC which had shorter telomeres in early stage tumors⁶⁸. rs2736100 polymorphism of the hTERT gene has been found involved in the regulation of hTERT expression and telomere length^{43,41}. On the contrary, RTL has been found to be shorter in familial non-medullary thyroid cancer affected members but was not associated with altered copy number or expression of hTERT⁶⁹.

HMGB1 knockdown in MCF-7 cells inhibited telomerase activity and cell proliferation⁶⁹. Single nucleotide polymorphisms in the region of hTERT gene were found to be associated with various malignancies. Telomerase RNA gene hTERT genotypes were recently linked to TL. A study analyzed 21 polymorphisms in the hTERT gene and RTL at average age 50 and 60 in 959 individuals with repeated blood samples.

Table 2: Studies reporting the association of hTERT with telomere length alterations

Cancer type	Inference	References
Intra uterine growth restriction placentas	Decreased hTERT mRNA leads to decreased protein expression and reduced	Biron-Shental et al. ⁶¹
	telomere elongation	
Breast cancer	BMP7 induces the hTERT gene repression	Cassar et al.62
Gastric cancer	rs2736100 polymorphism of the hTERT gene associated with TL alteration	Choi <i>et al.</i> ⁴¹
HNSCC	hTERT promoter mutation may influence TL	Barczak et al.67
Familial non-medullary thyroid cancer	Shorter RTL is not associated with hTERT expression	He <i>et al.</i> ⁶⁸
Breast cancer	Knockdown of HMGB1 in MCF-7 cells inhibit telomerase activity	Ke <i>et al.</i> ⁶⁹

BMP7: Cytokine bone morphogenetic protein-7, hTERT: human telomerase reverse transcriptase; HMGB1: High mobility group box 1, MCF-7: Michigan cancer foundation-7, RTL: Relative telomere length, TL: Telomere length

Mean RTL was associated with four genetic variants of the hTERT gene at age 60 (rs2736100, rs2853672, rs2853677 and rs2853676), two of which reported to be associated with cancer risk⁷⁰.

CONCLUSION

Telomere length variations have been reported in varied tumour types in comparison to control tissues. Genetic variations and SNPs of telomere associated gene ACYP2 have been reported to be associated with lung cancer. Long telomeres have also been found associated with higher risk of developing recurrence of lung cancer, especially in women. Long telomeres in peripheral white blood cells may depict increased risk of lung cancer. Telomere shortening may represent a genetic risk factor for the development of cirrhosis. Positive correlation was found between Helicobacter pylori infection and telomere shortening in human gastric mucosa, increasing the gastric cancer risk. Telomere shortening has also been observed in the early stages of pancreatic carcinogenesis. Moreover, a weak positive correlation between long leukocyte telomere length and pancreatic cancer risk has been reported. Conclusively, telomere length alterations may be used as novel biomarkers in relation to particular cancer types, but further studies are highly recommended to strengthen the association.

SIGNIFICANCE STATEMENT

Telomere length governs the lifespan of a cell by acting as a biological clock. Telomere alterations have been reported to be associated with different cancer types. The present paper reflects these associations including telomere shortening and extreme elongations in varied cancer subtypes. Paper also discusses the role of human telomerase reverse transcriptase in telomere length alterations. This paper will be useful for the researchers and practitioners in the field of cancer biomarkers and telomere biology.

REFERENCES

- 1. Singh, Z. and P. Chadha, 2016. Textile industry and occupational cancer. J. Occupational Med. Toxicol., Vol. 11. 10.1186/s12995-016-0128-3.
- 2. Singh, Z., 2014. Cancer occurrence among textile industry workers: Vital statistics. Int. J. Anal. Pharm. Biomed. Sci., 3: 5-11
- 3. Singh, Z., 2018. Leiomyosarcoma: A rare soft tissue cancer arising from multiple organs. J. Cancer Res. Pract. Elsevier, 5: 1-8.
- 4. Singh, Z. and R. Singh, 2017. Recent approaches in use of graphene derivatives in anticancer drug delivery systems. J. Drug Des. Res., 4: 1041-1044.
- Augustine, T.A., M. Baig, A. Sood, T. Budagov and G. Atzmon *et al.*, 2015. Telomere length is a novel predictive biomarker of sensitivity to anti-EGFR therapy in metastatic colorectal cancer. Br. J. Cancer, 112: 313-318.
- 6. Augustine, T., R. Maitra and S. Goel, 2017. Telomere length regulation through epidermal growth factor receptor signaling in cancer. Genes Cancer, 8: 550-558.
- 7. Biegler, K.A., A.K. Anderson, L.B. Wenzel, K. Osann and E.L. Nelson, 2012. Longitudinal change in telomere length and the chronic stress response in a randomized pilot biobehavioral clinical study: Implications for cancer prevention. Cancer Preven. Res., 5: 1173-1182.
- 8. Frescas, D. and T. de Lange, 2014. A TIN2 dyskeratosis congenita mutation causes telomerase-independent telomere shortening in mice. Genes Dev., 28: 153-166.
- 9. Lee, J.W., 2013. Telomere shortening by mutations in the RTEL1 helicase cause severe form of dyskeratosis congenita, Hoyerall-Hreidarsson syndrome. Clin. Genet., Vol. 84.
- 10. Chiodi, I. and C. Mondello, 2016. Telomere and telomerase stability in human diseases and cancer. Front Biosci., 21: 203-224.
- 11. Kachuri, L., L. Latifovic, G. Liu and R.J. Hung, 2016. Systematic review of genetic variation in chromosome 5p15. 33 and telomere length as predictive and prognostic biomarkers for lung cancer. Cancer Epidemiol. Prevent. Biomarkers, 25: 1537-1549.

- Mancini, J., P. Rousseau, K.J. Castor, H.F. Sleiman and C. Autexier, 2016. Platinum (II) phenanthroimidazole G-quadruplex ligand induces selective telomere shortening in A549 cancer cells. Biochimie, 121: 287-297.
- Taka, T., L. Huang, A. Wongnoppavich, S.W. Tam-Chang, T.R. Lee and W. Tuntiwechapikul, 2013. Telomere shortening and cell senescence induced by perylene derivatives in A549 human lung cancer cells. Bioorg. Med. Chem., 21: 883-890.
- Li, H., M. Hedmer, T. Wojdacz, M.B. Hossain and C.H. Lindh *et al.*, 2015. Oxidative stress, telomere shortening and DNA methylation in relation to low to moderate occupational exposure to welding fumes. Environ. Mol. Mutagen., 56: 684-693.
- Chen, N., X. Yang, W. Guo, J. You and Q. Wu et al., 2016.
 Association of polymorphisms in the telomere-related gene ACYP2 with lung cancer risk in the Chinese Han population. Oncotarget, 7: 87473-87478.
- Fernandez-Marcelo, T., A. Gomez, I. Pascua, C. de Juan and J. Head *et al.*, 2015. Telomere length and telomerase activity in non-small cell lung cancer prognosis: Clinical usefulness of a specific telomere status. J. Exp. Clin. Cancer Res., Vol. 34. 10.1186/s13046-015-0195-9.
- 17. Jeon, H.S., Y.Y. Choi, J.E. Choi, W.K. Lee and E. Lee *et al.*, 2014. Telomere length of tumor tissues and survival in patients with early stage non small cell lung cancer. Mol. Carcinogen., 53: 272-279.
- 18. Puri, N., R.T. Pitman, R.E. Mulnix, T. Erickson and A.N. Iness *et al.*, 214. Non-small cell lung cancer is susceptible to induction of DNA damage responses and inhibition of angiogenesis by telomere overhang oligonucleotides. Cancer Lett., 343: 14-23.
- 19. Wei, R., F.T. DeVilbiss and W. Liu, 2015. Genetic polymorphism, telomere biology and non-small lung cancer risk. J. Genet. Genomics, 42: 549-561.
- 20. Yang, F., P.W. Zhao, P. Sun, L.J. Ma and P.W. Zhao, 2016. [Effect of Cynomorium songaricum polysaccharide on telomere of lung cancer A549 cells]. Zhongguo Zhong. Yao Za Zhi., 41: 917-921.
- Kim, E.S., Y. Ye, A.A. Vaporciyan, J. Xing and M. Huang et al., 2015. Telomere length and recurrence risk after curative resection in patients with early-stage non-small-cell lung cancer: A prospective cohort study. J. Thoracic Oncol., 10: 302-308.
- 22. Sanchez-Espiridion, B., M. Chen, J.Y. Chang, C. Lu and D.W. Chang *et al.*, 2014. Telomere length in peripheral blood leukocytes and lung cancer risk: A large case-control study in Caucasians. Cancer Res., 74: 2476-2486.
- 23. Karimi, B., M. Yunesian, R. Nabizadeh, P. Mehdipour and A. Aghaie, 2017. Is leukocyte telomere length related with lung cancer risk?: A meta-analysis. Iran. Biomed. J., 21: 142-153.

- 24. Qian, Y., T. Ding, L. Wei, S. Cao and L. Yang, 2016. Shorter telomere length of T-cells in peripheral blood of patients with lung cancer. Onco. Targets Ther., 9: 2675-2682.
- Lan, Q., R. Cawthon, Y. Gao, W. Hu and H.D. Hosgood III et al., 2013. Longer telomere length in peripheral white blood cells is associated with risk of lung cancer and the rs2736100 (CLPTM1L-TERT) polymorphism in a prospective cohort study among women in China. Plos One, Vol. 8. 10.1371/journal.pone.0059230.
- 26. Machiela, M.J., C.A. Hsiung, X.O. Shu, W.J. Seow and Z. Wang *et al.*, 2015. Genetic variants associated with longer telomere length are associated with increased lung cancer risk among never smoking women in Asia: A report from the female lung cancer consortium in Asia. Int. J. Cancer, 137: 311-319.
- 27. Sun, B., Y. Wang, K. Kota, Y. Shi and S. Motlak *et al.*, 2015. Telomere length variation: A potential new telomere biomarker for lung cancer risk. Lung Cancer, 88: 297-303.
- 28. Sunpaweravong, P., K.L. Thu, W.L. Lam and S. Mai, 2016. Assessment of the clinical relevance of 17q25.3 copy number and three-dimensional telomere organization in non-small lung cancer patients. J. Cancer Res. Clin. Oncol., 142: 749-756.
- 29. Carulli, L., 2015. Telomere shortening as genetic risk factor of liver cirrhosis. World J. Gastroenterol., 21:379-383.
- 30. An, J., M. Wu, X. Xin, Z. Lin and X. Li *et al.*, 2016. Inflammatory related gene IKKα IKKβ IKKγ cooperates to determine liver cancer stem cells progression by altering telomere via heterochromatin protein 1-HOTAIR axis. Oncotarget, 72: 50131-50149.
- 31. Feng, W., D. Yu, B. Li, O.Y. Luo, T. Xu, Y. Cao and Y. Ding, 2017. Paired assessment of liver telomere lengths in hepatocellular cancer is a reliable predictor of disease persistence. Biosci. Rep., Vol. 37. 10.1042/BSR20160621.
- 32. De-Torres, J.P., P. Sanchez-Salcedo, G. Bastarrika, A.B. Alcaide and R. Pio *et al.*, 2017. Telomere length, COPD and emphysema as risk factors for lung cancer. Eur. Respirat. J., Vol. 49. 10.1183/13993003.01521-2016.
- 33. Frink, R.E., M. Peyton, J.H. Schiller, A.F. Gazdar, J.W. Shay and J.D. Minna, 2016. Telomerase inhibitor imetelstat has preclinical activity across the spectrum of non-small cell lung cancer oncogenotypes in a telomere length dependent manner. Oncotarget, 7: 31639-31651.
- 34. Seow, W.J., R.M. Cawthon, M.P. Purdue, W. Hu and Y.T. Gao *et al.*, 2014. Telomere length in white blood cell DNA and lung cancer: A pooled analysis of three prospective cohorts. Cancer Res., 74: 4090-4098.
- 35. Wang, W., X. Feng, X. Duan, S. Tan and S. Wang *et al.*, 2017. Establishment of two data mining models of lung cancer screening based on three gene promoter methylations combined with telomere damage. Int. J. Biol. Markers, 32: 141-146.

- 36. Wu, M., Z. Lin, X. Li, X. Xin and J. An *et al.*, 2016. HULC cooperates with MALAT1 to aggravate liver cancer stem cells growth through telomere repeat-binding factor 2. Scient. Rep., Vol. 6. 10.1038/srep36045.
- 37. Zhang, Z., Y. Jiao, M. Zhu and S. Zhang, 2017. Nuclear-shell biopolymers initiated by telomere elongation for individual cancer cell imaging and drug delivery. Anal. Chem., 89: 4320-4327.
- 38. Lee, W.P., M.C. Hou, K.H. Lan, C.P. Li, Y. Chao, H.C. Lin and S.D. Lee, 2016. *Helicobacter pylori*-induced chronic inflammation causes telomere shortening of gastric mucosa by promoting PARP-1-mediated non-homologous end joining of DNA. Arch. Biochem. Biophys., 606: 90-98.
- Tahara, T., T. Shibata, M. Okubo, T. Kawamura and N. Horiguchi *et al.*, 2016. Demonstration of potential link between *Helicobacter pylori* related promoter CpG island methylation and telomere shortening in human gastric mucosa. Oncotarget, 7: 43989-43996.
- Tahara, T., T. Shibata, T. Kawamura, N. Horiguchi and M. Okubo *et al.*, 2016. Telomere length shortening in gastric mucosa is a field effect associated with increased risk of gastric cancer. Virchows Archiv., 469: 19-24.
- 41. Choi, B.J., J.H. Yoon, O. Kim, W.S. Choi, S.W. Nam, J.Y. Lee and W.S. Park, 2015. Influence of the hTERT rs2736100 polymorphism on telomere length in gastric cancer. World J. Gastroenterol., 21: 9328-9336.
- 42. Du, J., X. Zhu, C. Xie, N. Dai and Y. Gu *et al.*, 2015. Telomere length, genetic variants and gastric cancer risk in a Chinese population. Carcinogenesis, 36: 963-970.
- 43. Heo, Y.R. and J.H. Lee, 2018. Association between telomere length and PIK3CA amplification in gastric cancer. Clin. Exp. Med., 18: 133-134.
- 44. Jung, S.J., J.H. Cho, W.J. Park, Y.R. Heo and J.H. Lee, 2017. Telomere length is correlated with mitochondrial DNA copy number in intestinal, but not diffuse, gastric cancer. Oncol. Lett., 14: 925-929.
- 45. Li, J., G. Ma, X. Zhu, T. Jin, J. Wang and C. Li, 2017. Association analysis of telomere length related gene ACYP2 with the gastric cancer risk in the Northwest Chinese Han population. Oncotarget, 8: 31144-31152.
- 46. Liu, Y., Y. Ling, Q. Qi, M. Zhu, M. Wan, Y. Zhang and C. Zhang, 2015. Trastuzumab increases the sensitivity of HER2-amplified human gastric cancer cells to oxaliplatin and cisplatin by affecting the expression of telomere-associated proteins. Oncol. Lett., 9: 999-1005.
- 47. Pan, W., J. Du, M. Shi, G. Jin and M. Yang, 2017. Short leukocyte telomere length, alone and in combination with smoking, contributes to increased risk of gastric cancer or esophageal squamous cell carcinoma. Carcinogenesis, 38: 12-18.

- 48. Qu, F., R. Li, X. He, Q. Li and S. Xie *et al.*, 2015. Short telomere length in peripheral blood leukocyte predicts poor prognosis and indicates an immunosuppressive phenotype in gastric cancer patients. Mol. Oncol., 9: 927-739.
- 49. Tahara, T., S. T ahara, N. Horiguchi, T. Kawamura and M. Okubo *et al.*, 2017. Telomere length in leukocyte DNA in gastric cancer patients and its association with clinicopathological features and prognosis. Anticancer Res., 37: 1997-2001.
- 50. Yoon, J.H., H.S. Seo, W.S. Choi, O. Kim, S.W. Nam, J.Y. Lee and W.S. Park, 2014. Gastrokine 1 induces senescence and apoptosis through regulating telomere length in gastric cancer. Oncotarget, 5: 11695-11708.
- 51. Matsuda, Y., T. Ishiwata, N. Izumiyama-Shimomura, H. Hamayasu and M. Fujiwara *et al.*, 2015. Gradual telomere shortening and increasing chromosomal instability among PanIN grades and normal ductal epithelia with and without cancer in the pancreas. Plos One, Vol. 10. 10.1371/journal.pone.0117575.
- 52. Antwi, S.O., W.R. Bamlet, B.T. Broderick, K.G. Chaffee and A. Oberg *et al.*, 2017. Genetically predicted telomere length is not associated with pancreatic cancer risk. Cancer Epidemiol. Prevent. Biomarkers, 26: 971-974.
- 53. Bao, Y., J. Prescott, C. Yuan, M. Zhang and P. Kraft *et al.*, 2017. Leucocyte telomere length, genetic variants at the TERT gene region and risk of pancreatic cancer. Gut, 66: 1116-1122.
- 54. Campa, D., B.Mergarten, I. De Vivo, M.C. Boutron-Ruault and A. Racine *et al.*, 2014. Leukocyte telomere length in relation to pancreatic cancer risk: A prospective study. Cancer Epidemiol. Prevent. Biomarkers, 23: 2447-2454.
- 55. Lynch, S.M., J.M. Major, R. Cawthon, S.J. Weinstein and J. Virtamo *et al.*, 2013. A prospective analysis of telomere length and pancreatic cancer in the Alpha Tocopherol Beta Carotene cancer (ATBC) prevention study. Int. J. Cancer, 133: 2672-2680.
- Skinner, H.G., R.E. Gangnon, K. Litzelman, R.A. Johnson, S.T. Chari, G.M. Petersen and L.A. Boardman, 2012. Telomere length and pancreatic cancer: A case-control study. Cancer Epidemiol. Prevent. Biomarkers, 21: 2095-2100.
- 57. Zhang, R., J. Zhao, J. Xu and F. Liu, 2016. Association of peripheral leukocyte telomere length and its variation with pancreatic cancer and colorectal cancer risk in Chinese population. Oncotarget, 72: 38579-38585.
- 58. Duell, E.J., 2017. Telomere length and pancreatic cancer risk: Breaking down the evidence. Gut, Vol. 66. 10.1136/gutjnl-2016-313156.
- 59. Mormile, R., 2017. Telomere length and pancreatic cancer risk-letter. Cancer Epidemiol. Biomarkers Prev., Vol. 26.
- Kim, W., A.T. Ludlow, J. Min, J.D. Robin and G. Stadler et al., 2016. Regulation of the human telomerase gene TERT by Telomere Position Effect-Over Long Distances (TPE-OLD): Implications for aging and cancer. Plos Biol., Vol. 14. 10.1371/journal.pbio.2000016.

- Biron-Shental, T., R. Sukenik-Halevy, Y. Sharon, I. Laish, M.D. Fejgin and A. Amiel, 2014. Telomere shortening in intra uterine growth restriction placentas. Early Hum. Dev., 90: 465-469.
- 62. Cassar, L., C. Nicholls, A.R. Pinto, R. Chen, L. Wang, H. Li and J.P. Liu, 2017. TGF-beta receptor mediated telomerase inhibition, telomere shortening and breast cancer cell senescence. Protein Cell, 85: 39-54.
- 63. Cheng, G., F. Kong, Y. Luan, C. Sun and J. Wang *et al.*, 2013. Differential shortening rate of telomere length in the development of human fetus. Biochem. Biophys. Res. Commun., 442: 112-115.
- 64. Khaw, A.K., M.P. Hande, G. Kalthur and M.P. Hande, 2013. Curcumin inhibits telomerase and induces telomere shortening and apoptosis in brain tumour cells. J. Cell. Biochem., 114: 1257-1270.
- 65. Merghoub, N., H. El Btaouri, L. Benbacer, S. Gmouh April 29, 2019 and C. Trentesaux *et al.*, 2017. Tomentosin induces telomere shortening and caspase dependant apoptosis in cervical cancer cells. J. Cell. Biochem., 118: 1689-1698.

- Druliner, B.R., X. Ruan, R. Johnson, D. Grill and D. O'brien et al.,
 2016. Time lapse to colorectal cancer: Telomere dynamics define the malignant potential of polyps. Clin. Transl. Gastroenterol., Vol. 7. 10.1038/ctg.2016.48
- 67. Barczak, W., W.M. Suchorska, A. Sobecka, K. Bednarowicz and P. Machczynski *et al.*, 2017. *hTERT* C250T promoter mutation and telomere length as a molecular markers of cancer progression in patients with head and neck cancer. Mol. Med. Rep., 16: 441-446.
- He, M., B. Bian, K. Gesuwan, N. Gulati, L. Zhang, N. Nilubol and E. Kebebew, 2013. Telomere length is shorter in affected members of families with familial nonmedullary thyroid cancer. Thyroid, 23: 301-307.
- 69. Ke, S., F. Zhou, H. Yang, Y. Wei and J. Gong *et al.*, 2015. Downregulation of high mobility group box 1 modulates telomere homeostasis and increases the radiosensitivity of human breast cancer cells. Int. J. Oncol., 46: 1051-1058.
- 70. Melin, B.S., K. Nordfjall, U. Andersson and G. Roos, 2012. *hTERT* cancer risk genotypes are associated with telomere length. Genet. Epidemiol., 36: 368-372.