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Abstract
A new procedure based on conjugate gradient projection method for solving linear programming problems is given. This procedure
presented here consists of a sequence of moves in the interior of the polyhedron set representing the feasible region until the optimal
point is reached in at most m+n steps. Sensitivity analysis when changes in the objective function coefficients are occurred is investigated.
The task of this analysis is to find the range of parameter to maintain the optimality for the given optimal point under the effect of these
changes A simple production example is given to clarify the theory of the given procedure.
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INTRODUCTION

The   problem   of   linear   programming   (LP)   is   one   of
the   earliest   formulated   problems   in   mathematical
programming,  where a linear function has to be maximized
(or minimized) over a convex constraint polyhedron X. This
kind of problem has  been  widely  applied  in  practically 
every  area  of production, economic, social and government
planning.

The simplex algorithm was early suggested for solving
this  problem  by  moving  toward  a  solution  on  the  exterior
of the constraint polyhedron X. In 1984, the area of linear
programming underwent a considerable change of
orientation when Karmarkar1 introduced an algorithm for
solving (LP) problems which moves through the interior of the
polyhedron. The algorithm of Karmarkar's and subsequent
additional variants2,3 established a new class of algorithms for
solving linear programming problems known as the interior
point methods .While methods based on vertex information
may  have  difficulties  as  problem's  size  increases,  the
interior  point  methods  proved  to  be  less  sensitive  to
problem's size. For more details about interior point methods,
the reader is referred to Ye4. Also for more recent work
concerning interior point solution and conjugate gradient
projection method, the reader is recommended to review5-8.
Some time, it is quite important to know the range of
parameters for which the solution remains optimal. The
investigation that deals with changes in the optimal solution
due to changes in the data of the linear programming
problems can be found in Arsham9, Ghaffari-Hadigheh et al.10

and Hadigheh et al.11. In this study, an iterative method for
solving (LP) problems with sensitivity analysis is given. This
analysis presented here permits perturbation in the data  of
the objective function that maintain the optimality of the
problem.

PROBLEM STATEMENT AND THE
SOLUTION CONCEPT

The  linear  programming  problem  (LP)  arises  when  a
linear   function   is   to   be   maximized   over   a   convex
constraint  polyhedron  X.  This  problem  can  be  formulated
as follows:

(1)
 

 

TMaximize F x p x
xX x,  Ax b



 

where, p, x0Rn, A is an (m+n)×n matrix, b0Rm+n, it pointed out
that the nonnegative conditions are included in the set of
constraints. This problem can also be written in the form:

(2)
  T

T
i i

Maximize  F x = p x
Subject to
a x  b        i = 1, 2...,  m n 

where, represents the ith row of the given matrix A, then itT
ia

has in the non-degenerate case an extreme point (vertex) of
X lies on some n linearly independent subset of X. It shall give
an iterative method for solving this problem, this method
starts with an initial feasible point then a sequence of feasible
directions toward optimality is generated to find the optimal
extreme point of this programming, in general if xk-1 is a
feasible point obtained at iteration k-1 (k = 1, 2...) then at
iteration k our procedure finds a new feasible point xk given
by:

xk = xk-1+αk-1dk-1 (3)

where, dk-1 is the direction vector along which it move and
given by:

dk-1 = Hk-1p (4)

where, Hk-1 is an n×n symmetric matrix given by:

(5)k 1 q
k 1

I if k 1
H

H if k  1

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  

In Eq. 5, I is an n×n identity matrix and q is the number of
active constraints at the current point while  is defined asq

k 1H 

follows, for each active constraint s; s = 1, 2... q:

(6)
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With, H0k-1 = I. Then Hk-1 is given by Hk-1 = Hqk-1. The step length
"k-1 is given by:

(7)
T K 1
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The above relation stated that "k-1 is always positive.
Proposition   2-3   shows   that   such   a   positive   value   must
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exist if a feasible point exists. Also due to the well known
Kuhn-Tucker condition12,6 for the point xk to be an optimal
solution of the linear program (2-1) their must exist u>0 such
that:

uT Ar = pT     or     uT = pT (Ar)G1 (8)

where, Ar is an nxn sub-matrix of the given matrix A containing
only the coefficients of the set of active constraints at the
current point xk. This fact will act as a stopping rule of our
proposed algorithm.

A NEW ALGORITHM FOR SOLVING (LP) PROBLEMS

The algorithm presented on this section for solving (LP)
problems consists of the following steps:

Step 0: Set k=1, Ho =I, d0 =p, let x0 be an initial feasible point
and apply relations (Eq. 7) to compute "0

Step 1: Apply relation (Eq. 3) to find a new solution xk

Step 2: Apply relation (Eq. 8) to compute u, if u>0 stop. The
current solution xk is the optimal solution otherwise
go to step 3

Step 3: Set k = k+1, apply relations Eq. 5, 4 and 7 to compute
Hk-1, dk-1 and "k-1, respectively and go to step 1

Remark 3-1: Assuming that q is the number of active
constraints at point xk then if q<n and relation (Eq. 8) is
satisfied this indicates that xk is an optimal non-extreme point,
in this case the objective function can not be improved
through any feasible direction and then we have Hk p = 0 at
this point xk, it noted that although the matrix  Hk  is singular
it  does  not  cause  the  breakdown  of  this  algorithm  but
indicate that all subsequent search directions dk+1 will be
orthogonal to p.

Remark 3-2: If xk-1 is an extreme non-optimal i.e., there are n
active constrains at point xk-1 and relation Eq. 8 is not satisfied.

A   sub-matrix   from   the   given   matrix   Ar   is   chosen
(at least one constraint has to be dropped) to define a
direction dk-1 for the new movement. This sub-matrix is normal
to a column (aw) from  (Ar)G1  such  that  pT (aw)  is  the  most 
negative  element in Eq. 8.

Theorem 3-1: Our procedure solves the (LP) problem in at
most m+n iterations.

Proof: Since in each iteration it added at least one active
constraint, then the optimal point may be reached in n steps
and the algorithm terminate in at most n iterations. On the
other hand if at any iteration we have non optimal extreme
point  and  at  least  one  constraint  has  to  be  dropped  from
the  set  of  active  constraints.  Since  our  allowed  directions
by (Eq. 4) that improve the value of the objective function lies
in the nullity of a subset of the constraint set, then it is moving
in the direction parallel to a certain subset of the (m+n)
constraints and hence in the worst case the maximum number
of iterations required to reach the optimal point is limited by
m+n.

SENSITIVITY ANALYSIS FOR LINEAR
PROGRAMMING PROBLEM

Introducing a scalar parameter in the objective function
coefficient of (LP) problem may affect the optimal solution due
to some changes on the data of the objective function.

Now consider the perturbed (LP) problem when changes
in the coefficient of the objective function is occurred and is
formulated as:

(9)

1 TMaximize F(x) (p p ) x
Subject to
xX {x,  Ax b,  x 0}

  

  

where, µ is a scalar parameter and p10Rn. Our task of this
sensitivity analysis is to find the range of µ that maintain the
optimality  of  the  linear  programming  problem  using  the
same argument then the only change will be in computing:

uT(µ) = (p+µp1) (Ar)G1 (10)

and for the optimal point to remain optimal u (µ )>0 has to be
satisfied which gives the range of µ for the optimal point to
remain optimal for the new perturbed problem (Eq. 9).

An application to production example: A small company
manufactures four types of products. The data summarized
the production hours per unit in each of three production
operations and the profit per each unit is also given:

Operations (h)
-----------------------------------------------------------

Products I II III Profit/unit
A 1 2 0 2
B 3 1 1 4
C 0 0 4 1
D 1 0 1 1
Maximum time available 4 3 3

9
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Assuming that the company wants to maximize profit,
how many units of each product should be manufactured . For
example suppose that x1, x2, x3 and x4 represent the number of
units for each product, respectively, the above problem can be
formulated as a linear programming problem:

1 2 3 4

1 2 4

1 2

2 3 4

1 2 3 4

Maximize F(x) = 2x +4x +x +x
Subject to

x +3x +x 4
2x +x 3
x +4x +x 3
x 0, x 0, x 0, x 0





   

Step 0: 0 0
0

1 0 0 0 0.5 2
0 1 0 0 0.5 4

k 1, H and let x and d
0 0 1 0 0.25 1
0 0 0 1 0.5 1

     
     
             
          
     

then Eq. 7 gives "0 = 0.1 and we go to step 1

Step 1: Apply relation (Eq. 3) to get:

1

0.5 2 0.7
0.5 4 0.9

X 0.1
0.25 1 0.35
0.5 1 0.6

     
     
            
          
     

Step 2: For this point x1 the first constraint is the only active
constraint and since relation (Eq. 8) is not satisfied
indicates this point is not optimal

Step 3: Set k = 2. Apply relation (Eq. 5, 4 and 7) to get:

1
1 1

0.91 0.27 0 0.09 0.64
0.27 0.18 0 0.27 0.09

H , d and 0.03
0 0 1 0 1

0.09 0.27 0 0.91 0.36

    
              
           

Step 1: Apply relation (3) to get:

2
2 2

0.9 0.27 0.09 0.08 0.71
0.27 0.18 0.02 0.27 0.07

H , d and 0.49
0.09 0.02 0.03 0.15 0.14
0.08 0.27 0.15 0.88 0.5

    
              
             

Step 2: For this point x2 the first and the third constraint are
the only active constraints and since relation (8) is
not satisfied

Step 3: Set k = 3. Apply relation (Eq. 5, 4 and 7) to get:

2
2 2

0.9 0.27 0.09 0.08 0.71
0.27 0.18 0.02 0.27 0.07

H , d and 0.49
0.09 0.02 0.03 0.15 0.14
0.08 0.27 0.15 0.88 0.5

    
              
             

Step 1: Apply relation (Eq. 3) to get:

3

0.75 0.71 1.07
0.9 0.07 0.86

X 0.49
0.38 0.14 0.45
0.59 0.5 0.34

     
                 
               

Step 2: For this point x3, it has the first, the second and the
third constraint are the active constraints, since
relation (Eq. 8) is not satisfied we go to step 3

Step 3: Set k = 4. Apply relation (Eq. 5, 4 and 7) to get:

3
3 3

0.03 0.07 0.02 0.16 0.06
0.07 0.13 0.05 0.33 0.11

H , d and 1.2
0.02 0.05 0.02 0.12 0.04
0.16 0.33 0.12 0.82 0.29

     
              
           

we use relation (3) to get:

4

1.07 0.06 1
0.86 0.11 1

X 1.2
0.45 0.04 0.5
0.34 0.29 0

     
     
            
               

Since        relation        (Eq.        8)        is        satisfied        with
uT  =  1.1  0.45  0.25  0.35  this  indicates  that  the  extreme
point x4 is the optimal point for the above linear programming
problem with optimal value F(x4) = 6.5.

Sensitivity analysis has to be done if the given problem to
be solved is taken the form:

  1 2 3 4

1 2 4

1 2

2 3 4

1 2 3 4

Maximize    F x  (2 µ)x  (4 2µ)x (1 µ)x (1 µ)x
Subject to
x 3 x   x    4
2x x             3
x 4x x 3
x 0,  x 0,  x 0,  x 0

       

  
 

  
   

10



Trends Applied Sci. Res., 14 (1): 7-11, 2019

Since  for  µ  =  0,  it  has  the  extreme  point  x4  is  the
optimal   point    and    relation    (Eq.    8)    is    satisfied    with
uT  =  1.1  0.45  0.25  0.35,  then  for  the  perturbed  problem
when a scaler parameter µ is added in the objective function
we have to apply (Eq. 10) to compute:

uT(µ) = (1.1-0.9 µ   0.45+0.95 µ   0.25-0.25 µ   1.35-4.15 µ)

which gives the range of µ:

-0.47<µ<0.33

as the range such that the optimal extreme point x4 remains
optimal for the perturbed problem.

CONCLUSION

In this study, it gave an iterative procedure for solving the
linear programming problems with inequality constraints. The
procedure is based on moving in the interior of the
polyhedron through a sequence of feasible directions toward
optimality. This procedure is used to study the effect for some
change of the data of the objective function on the optimal
solution of the given problem . Also the given method can be
applied to other mathematical programming problems such
as the linear fractional programming problem.

SIGNIFICANCE STATEMENT

This study discovered a new procedure for solving the
linear programming problem that can be beneficial for some
sensitivity investigation concerning the optimality of the given
problem and this study will help the researchers to uncover
the critical areas of many optimization problems that many
researchers were not able to explore. Thus a new theory on
classical sensitivity analysis for mathematical programming
problems may be arrived.
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