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Abstract
Background and Objectives: This research presents series solution of time-fractional Black-Scholes partial differential equation with
boundary condition for a European option pricing problem in a Caputo sense. The aim of this study was to conduct the comparison of
two semi-analytical methods namely the Fractional Reduced Differential Transform Method (FRDTM) and the Fractional Laplace Transform
Homotopy Perturbation Method (FLTHPM) for the solution of the time-fractional Black-Scholes equation. Materials and Methods: These
two methods are based on trans forms  involving fractional derivatives. Both methods provide a closed-form solution in the form of a
convergent series with easily computable components, require no restrictive assumptions. The methods are compared on time-fractional
Black-Scholes equation. Results: The solution generated by FRDTM  is in excellent agreement with that of FLTHPM. The small size of
calculation in FRDTM  in comparison with FLTHPM is its advantage. Conclusion: Hence, FRDTM is strongly recommended for the solution
of time-fractional Black-Scholes equation emanating from financial market.
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INTRODUCTION

The valuation of options has become an important aspect
of financial engineering and mathematical finance. Black and
Scholes1 derived the most famous analytical valuation formula
known as the “Black-Scholes model" for options on both
dividend and non-dividend yields. The Black-Scholes model
for the valuation of options is given by the following equation:

(1)
2 2 2
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v (x, t) x v (x, t) v (x, t)
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where, (x, t)0R+×(0, T), v (x, t) is the price of the European call
option, x is the price of the underlying asset, t is the current
time, T is the time to expiry/maturity date, r is the risk neutral
interest rate and σ is the volatility. Let the values of the
European  call  and  put  options  be  denoted  by  vc (x, t) and
vp (x, t), respectively. The payoff functions for European call
and put options are given by:
 

vc (x, t) = Max (x-E,0) (2)

vp (x, t) = Max (E-x, 0) (3)

where, E is the exercise price of the option. During the past
few decades, many researchers have studied the existence of
solutions of the Black-Scholes model using different
approaches2. The concepts of the fractional calculus have
gained much attention due to the fact that fractional
differential  equation  provides  an  excellent  instrument  for
the description of many practical dynamics phenomena
emanating from applied mathematics, financial market,
economics, physics and engineering3-7. The reduced
differential transform method was introduced by Keskin and
Oturanc8 to solve both linear and non-linear Partial Differential
Equations (PDEs)9-11. Acan et al.12 applied a new local fractional
reduced differential transform method for the solution of
some linear and non-linear PDEs on cantor set. The main aim
of this research was to compare FRDTM with the FLTHPM for
the solution of time-fractional Black-Scholes equation with
boundary condition for a European option pricing problem. 

Definitions of terms and fractional calculus theory: This
section presents some definitions of terms and fractional
calculus theory.

Definition 1: The Riemann-Liouville integral operator of order
">0 of a function f0Cµ, µ>-1  is defined as13:
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Where:
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Definition 2: The Riemann-Liouville derivative of order ">0
denoted by D" is defined13:

(5) 
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Using Eq. 4, we get Eq. 5:
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where, and n is the smallest integern
1f C ,n N,n 1 n     

greater than ". Equation 6 is also called Caputo fractional
derivative of f0CnG1. The following result gives the properties of
fractional calculus14.

Lemma 1: If n-1<"<n, n0N, f0L1 (R), then the following
properties hold:

(7)
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and:

(8)J D f (t) f (t)    

Definition 3: The Mittag-Leffler function denoted by Ea(z) is
defined as the series representation of the form:

(9)
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Equation 9 is valid in the whole complex plane.

Definition 4: The Fractional Reduced Differential Transform
(FRDT) Φk (x) of the function N (x, t) is defined as:

    (10)
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Definition 5: The fractional reduced differential inverse
transform of Φk (x) is defined as follows:

(11)k
k 0

k 0

(x, t) (x)(t t ) ,0 1






      

Using Eq. 10 and 11, we state without proofs, some basic
properties of FRDTM as follows:

Theorem 1: If:

π (x, t) = N (x, t)+ξ (x, t)

Then:

Πk (x) = Φk (x)+Ξk (x)

Theorem 2: If:

π (x, t) = aφ (x, t)

Then:

π k (x,) = aNk (x)

where, a is a constant.

Theorem 3: If:

 π (x, t) = N (x, t)> (x, t)

Then:
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Theorem 6: If:
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Definition 6: Let f (x) be a piece-wise continuous function on
every closed interval {a<x<b}d{0<x<4} there exists
f:{0<x<4}6R, f: x6f (x) such that s0R. Then F (s) is called the
Laplace transform of f (x) and is given by:

(12)sx

0

L(f (x)) (s) : F(s) f (x)e dx


  

whenever the integral exists.

Definition 7: Let L(f (x))(s) := F (s) in the transformed s-space,
that is, F(s) is the Laplace transform of the function f(x), then
f(x) is called the inverse Laplace transform of F (s). In that case:

(13)
c i

1 sx
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1
L (F(s)) F(s) e ds
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Definition 8: The Laplace transform of the Riemann-Liouville
fractional integral is defined15:

L [Jα f (x)] (s) : = sGα F (s) (14)

Definition 9: The Laplace transform of the Caputo fractional
derivative is defined15:

(15)
n 1

( k 1) (k)

k 0

L[D f (x)](s) : s F(s) s f (0), (n 1,n]


   



   

IMPLEMENTATION OF THE TWO METHODS

This section presents the implementation of the fractional
reduced differential transform and the fractional Laplace
transform homotopy perturbation method as follows.

Application: Consider the following time-fractional Black-
Scholes option pricing partial differential equation of the
form16:

(16)
2

2

v (x, t) v (x, t) v (x, t)
(k 1) kv(x, t) 0

t x x





  
    

  

Subject to the initial condition:

v  (x, 0) = Max  (ex-1, 0) (17)
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Notice that this system of equations contains just 2
dimensionless parameters , where, k represents the2

2r
k 


balance between the rate of interests and the variability of
stock returns and the dimensionless time to expiry , even

2T

2



though there are 4 dimensional parameters, E, T, F2 and r in
the original statements of the problem.

Method of solution via FRDTM: Applying FRDT on both sides
of Eq. 16 and 17 yields, respectively:

    (18)
2

n n
n 1 n2

V (x) V (x)(1 n)
V (x) (k 1) kV (x)

(1 (1 n)) x x

    
    
      

and:

v0 (x) = Max (ex-1, 0) (19)

Therefore:

(20)x x
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In general:

(23)
n 1 n

x x
n

( 1) k
V (x) (max (e ,0) max (e 1,0))

(1 n )

 
      

Using the fractional reduced differential inverse
transform, we obtain:

v (x, t) = V0 (x)+V1 (x) ta+V2 (x) t2a+V3 (x) t3a+... (24)

Substituting Eq. 19-23 into Eq. 24 and solving further, one
gets:

n 1 n
x x x

n 1

( 1) (kt )
v (x, t) max (e 1,0) (max (e ,0) max (e 1,0))

(1 n )

 



 
        



(25)

Method of solution via FLTHPM: Applying the Laplace
transform to Eq. 16 and 17, we obtain:

         (26)x
xx x

1 1
L [v(x, t)] max (e 1,0) L[v (k 1)v kv]

s s
     

By means of the Laplace transform inverse, Eq. 26
becomes:

      (27)x 1
xx x

1
v (x, t) max (e 1,0) L L[v (k 1) v kv]

s




       
 

Now, we apply the homotopy perturbation method17, one
obtains:

    (28)n x 1 n
n n

n 0

1
p v (x, t) max (e 1,0) p L L[ p H (v)]

s







       
  

 

where, Hn are He’s polynomials. The components of He’s
polynomials are given by the recursive relation:

Hn (v) = vnxx+(k-1) vnx-kvn, n>0 (29)

Equating the corresponding power of p on both sides in
Eq. 28 yields:

p0: v0 (x, t) = max (ex-1, 0) (30)

1 1 x x
1 0

1 ( kt )
p : v (x, t) L L [H (v)] (max (e 1,0) max (e ,0))

s (1 )
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2 1 x x
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1 ( kt )
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s (1 2 )






         

(32)

Continuing this manner, it is:

n
n 1 x x

n n 1

1 ( kt )
p : v (x, t) L L [H (v)] (max (e 1,0) max (e ,0))

s (1 n )






         

(33)

The solution of Eq. 16 subject to Eq. 17 is obtained as:

i
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i 0
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x x
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CONCLUSION

In this research, two semi-analytical methods was used for
finding the solution of time-fractional Black-Scholes equation
with boundary condition for a European option pricing
problem on non-dividend yield under geometric Brownian
motion. The solutions generated by FRDTM and FLTHPM
coincide and are in the form of convergent series with easily
computable components in a direct way without using any
restrictive conditions. The results show that FRDTM is found to
be less computational expensive. Hence, FRDTM is a good
alternative  approach  for  the  solution  of  time-fractional
Black-Scholes equation. Some extensions and modifications of
the methodology can be explored by further research. A
natural extension is the applications of FRDTM and FLTHPM to
higher dimensional time-fractional Black-Scholes equation for
the Basket options with dividend yield under jump diffusion
processes.

SIGNIFICANCE STATEMENT

This study discovers an alternative approach for the
solution of time-fractional Black-Scholes equation in a Caputo
sense. This study shows that the small size of calculation in
FRDTM in comparison with FLTHPM is its main advantage. This
study will help the researcher to uncover the critical areas of
fractional calculus emanating from financial market that many
researchers were not able to explore. Thus, a better solution of
the time-fractional Black-Scholes like equations via FRDTM
may be arrived at.
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